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Executive summary 

A methodology to predict the local and distortional buckling strength of purlins with paired 
torsion bracing using the Direct Strength method has been developed. The procedure is based on 
the component stiffness method that utilizes a displacement compatibility approach to calculate 
the anchorage forces in a purlin system. The procedure considers the partial diaphragm restraint 
provided by the sheathing and incorporates both first order and approximate second order 
torsion effects to predict the actual distribution of stresses along the cross section of the purlin. 
This distribution of stresses can vary substantially from the conventionally assumed constrained 
bending distribution and thus, correspondingly, the predicted local and distortional buckling 
strength can differ substantially. 

To validate the methodology, the procedure has been used to predict the strength of a series 
of 12 base tests. The test series included 8 in. and 10 in. deep lipped Z-sections with both thin 
(0.057 in.) and thick (0.100 in.) profiles. The same standing seam deck and clips were used in all 
of the tests. The detailed investigation into the behavior of the base test revealed several slight 
load imbalances that, when properly accounted for, can have an impact on the predicted strength. 
The comparison between the tested strength and predicted strength showed good correlation and 
the methodology was largely able to predict test anomalies such as failures at the brace location 
versus the mid-span and failures of the eave purlin versus the ridge purlin. The prediction 
methodology ignores the additional torsional restraint provided by the sheathing and thus 
generally resulted in a slightly conservative approximation of the local and distortional buckling 
strength.  

The methodology was expanded to consider slope effects in real roof systems. Equations are 
provided to predict the strength of simple span and multi-span interior (fixed-fixed end 
conditions) sloped roof systems. Equations have not been included for multi-span end bays 
(pinned-fixed end conditions) as the asymmetry requires additional work. As downslope forces 
are applied to the roof system, they affect the lateral displacement of the diaphragm and thus 
have an impact on the distribution of stresses along the purlin cross section. A comparison of the 
changes in stresses is provided. In general, as the slope of the roof increases, lateral deflection of 
the diaphragm is reduced and the distribution of stresses approaches the constrained bending 
distribution. There is a corresponding increase in strength. As the slope of the roof gets much 
steeper, and the lateral deflection of the purlins moves downslope, the predicted strength 
decreases substantially. In this case of steep roof slopes, it is believed that there is substantial 
inelastic reserve capacity, that when accounted for will show improved predicted strength.  
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Background 

Paired torsion bracing is commonly used in purlin roof systems supporting standing seam 
sheathing. Although many configurations are possible, the methodology developed in this report 
applies to a pair of torsion braces placed symmetrically about the mid-span of the purlin. The 
braces are considered torsion only, that is, they do not provide lateral restraint to the purlin. One 
of the advantages of this system, is that since lateral restraint is not provided by the brace, it need 
not be anchored externally. All of the lateral restraint is provided by the sheathing. To accomplish 
this torsion only bracing configuration, torsion braces are commonly applied between two 
adjacent purlins, and only needs to be applied in alternating spaces between the purlins as shown 
in Figure 1a. The braces are commonly configured either with a channel connected to each purlin 
or diagonal angles as shown in Figure 1b.  

 
 
 

 
 
 

a) bay layout of torsion braces    b) common torsion brace configurations 
Figure 1. Paired torsion braces 

 
The component stiffness method, which was developed to predict the anchorage forces in 

purlin systems (Murray et al. 2009), utilizes displacement compatibility to evaluate the forces 
interacting between a system of purlins, sheathing, and external braces. To develop the strength 
prediction methodology presented in this report, the component stiffness method is expanded to 
estimate member geometric second order effects and calculate the actual distribution of stresses 
in the purlin cross section. By considering the interaction between the purlins, sheathing and 
braces, biaxial bending and torsion effects are accounted for in the calculation of the true 
distribution of stresses. This stress distribution can deviate substantially from the typically 
assumed constrained bending assumption as shown in Figure 2. This drastic change in the 
distribution of stresses causes two important changes when predicting the strength. First, when 
considering biaxial bending and torsion, first yield in the cross section will be reached at a lower 
load level than if the purlin is considered fully constrained. Second, the change in stress 
distribution has a large impact on the predicted local and distortional buckling strength. 

For a low slope roof under gravity loads, as the purlin translates upslope, compressive 
stresses are reduced at the tip of the top flange and increased at the web flange juncture. The 
stress gradient in the top flange, shifts the critical location for local and distortional buckling away 
from the flange tip towards the web-flange juncture. This shift in stresses is consistent with some 
test results, where local buckling is observed at the web-flange interface. Figure 3 shows the 
buckling curves for the stress distributions shown in Figures 2 a) and 2 b). For the constrained 
bending stress distribution, the buckling curve has both a local and distortional buckling minima. 
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As biaxial bending and torsion are incorporated into the stress distribution, the local buckling 
minima is decreased and the distortional buckling mode is virtually eliminated.  

In a similar manner, the methodology predicts the strength based on the stress distribution at 
the brace location. Because at the brace location a large concentrated torque is applied to the 
purlin, there is a spike in the torsion stresses at the brace location. The direction of this 
concentrated torque depends on the configuration of the system of purlins. In some cases, the 
torque will resist the tendency of the purlins to roll upslope, whereas in other configurations, the 
torque resists a downslope roll of the purlins. In either case, the concentrated torque at the brace 
causes a different stress distribution than at the mid-span location as shown in Figures 2 b) and 
2 c). In some cases, the difference in stresses is large enough such that the location of the predicted 
failure will be away from the mid-span at the brace location. This failure mode away from the 
mid-span is also consistent with some test results.  
 

          
a) constrained bending   b) mid-span true stress   c) brace location true stress 

Figure 2 Comparison of Stress Distribution 
 

 
Figure 3. Finite Strip Buckling Analysis constrained bending stress (+) versus true stress (x) 
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Methodology development from base tests  

The methodology was developed and validated based on the results of a series of base tests 
performed by Emde (2010). The process to apply the procedure to evaluate the base tests is 
summarized below. 

1. Quantify the imbalances of applied load 
2. Determine the in-plane force in the diaphragm 
3. Determine the torsion effects on purlin 

a. First Order 
b. Second Order 

4. Determine the restraining torque provided by the paired torsion braces 
5. Determine the additional forces to maintain equilibrium of purlins 
6. Determine the cross section normal stresses caused by biaxial bending effects 
7. Determine cross section normal stresses caused by torsion effects 
8. Perform finite strip analysis to determine local and distortional buckling coefficients 
9. Calculate the nominal moment capacity 
Although the intent of the analysis procedure is to eventually eliminate the need to perform 

the base test to determine strength, for those that have existing base test data, applying the 
procedure to existing data can provide insight into the behavior of these systems. The analysis 
procedure can be used to refine the diaphragm stiffness for use in design and it can provide a 
lower bound value for estimating the strength of torsion braces as well as providing a lower 
bound value for the shear strength of the diaphragm. 

Applied load imbalances 

The Base Test (AISI 2017c) is a test performed to evaluate the strength of purlin supported 
standing seam roof systems. The test specimen, as shown in Figure 4, is comprised of two purlins 
in a simple span configuration spaced at the intended spacing of the roof system (usually five 
feet) and topped with the roofing panel system that includes all of the insulation components. 
The specimen is built in a three sided chamber that is sealed on the fourth side with a plastic 
membrane. A vacuum is drawn within the chamber to simulate applied pressures on the roof 
system. In a real roof system, purlins are typically installed with the top flanges pointed in the 
upslope direction. Likewise, in the base test, purlins are installed with the top flanges facing in 
the same direction towards the “ridge” or the “upslope” side of the chamber. The other side of 
the chamber is the “eave” or the “downslope” side. 

While the base test is a valuable tool to predict the strength of purlin roof systems, care must 
be taken in interpreting and evaluating the results of the test. There are several subtle imbalances 
in the base test procedure that must be accounted for. For flexible diaphragms common with 
standing seam systems, second order effects can be introduced into the test. Including these 
effects has an impact on the interpretation of the results.  

In the base test, the pressure is applied uniformly as the vacuum is drawn in the chamber. 
The uniformly distributed dead load, ud, includes the purlin and panel self-weight in addition to 
the weight of insulation, braces along the span, and the plastic sheathing. The uniform live load, 
up, includes not only the pressure applied to the panel but also the portion of the sheathing that 
is draped between the end of the panel to the edge of the chamber, the distance, gap, as shown in 
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Figure 4. The balanced uniform load on each purlin, w1st is calculated by 

  
   d p

1st
u panel + u panel + gap

w =
2

 (1) 

The force from the panel is transferred to the purlin flange at an eccentricity relative to the 
web, esx, as shown in Figure 4. Because the base test is constructed such that the panels are 
symmetric relative to the purlin web, effectively there is additional load applied to the eave purlin 
and corresponding decrease in the load applied to the ridge purlin as shown in Figure 5. This 
imbalance is accounted for by adding an additional uniform load, we, resulting from this 
eccentricity to the eave purlin and subtracting the same uniform load, we, from the ridge purlin. 
Thus, Figure 5 shows the net force transferred from the sheathing to each purlin flange. The net 
force transferred to the eave purlin is w1st + we whereas the net force transferred to the ridge 
purlin is w1st - we. To account for the difference in the direction of forces acting on the eave purlin 
versus the ridge purlin, the term ξ is used, where ξ = 1 for the eave purlin and ξ = -1 for the ridge 
purlin. Note, all analysis presented here was performed based on an eccentricity of 1/3 of the flat 
width of the flange (i.e. esx = 1/3 b). Some informal parametric studies showed this eccentricity to 
have the best correlation. 

 
 
 
 
 
 
 
 
 

Figure 4. Nomenclature for base test evaluation (Seek and Parva 2018) 
 

 
a) without flange eccentricity   (b) including flange eccentricity 

Figure 5. Panel-purlin transfer of forces (Seek and Parva, 2018) 
 
The additional uniform load resulting from the applied load imbalance is calculated by  

 ew = w
 
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 

sx
1st

2e
spa

 (2) 

There is also a second order effect that causes additional load imbalance to be shifted towards 
the eave purlin. As the pressure is increased on the test specimen, as a result of the inclined 
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principal axes, the system of purlins will deflect laterally at the mid-span by the amount, Δmid. 
The gap between the end of the sheathing and the edge of the chamber will increase on the eave 
side and decrease on the ridge side. As the plastic sheathing sealing the specimen to the chamber 
transfers force to the edge of the panel, this force will increase on the eave side proportionally to 
the increase in the gap and decrease on the ridge side correspondingly. These second order forces, 
w2nd, are added to the eave and subtracted from the ridge. These forces, which have a parabolic 
distribution with the peak at the mid-span of the purlin, are calculated by  

 
  

   
   

mid
2nd p

panel
w u

2 spa
  (3) 

 
Figure 6: Second order force redistribution (Seek and Parva 2018) 

Diaphragm in-plane forces 

Displacement compatibility is utilized to determine the in-plane forces interacting between 
the purlin and the sheathing. Lateral displacement compatibility between the purlin and 
sheathing is determined at the torsion brace location. This displacement compatibility assumes 
that the torsion braces are rigid and there is no rotation of the purlin at the brace. For a purlin 
subject to a uniformly distributed gravity load, the restraining force in the diaphragm along the 
span of the purlin is uniform. The force in the diaphragm, wrest, is proportional to the applied 
gravity load, w, by the relationship,  

restw w        (4) 

where 

 

 
  
 

 



xy 4

x
1

my
4 2

1 2
my

I
L

I
C

EI

L L
C C

panelEI
G'

2

 (5) 

         and 

     
                       

2 3

1
1 c c c

C 1 2
24 L L L

  (6) 

     
           

    
2

1 c c
C 1

2 L L
 (7) 
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    where  
       G’   = stiffness of diaphragm, lb/in.  
       L    = purlin span 
       panel   = width of sheathing panel 

       Imy          = modified moment of inertia = 
 2

x y xy

x

I I I

I
 

        c    = distance from support location to brace location (see Figure 1) 
 
For evaluating the base test, the symbol, , is used to represent the proportion of the gravity 

load that translates into an in-plane force in the diaphragm. For sloped roof systems, it is more 
appropriate to define the in-plane force in the diaphragm relative to the applied force 
perpendicular to the plane of the sheathing. To highlight this subtle distinction, the terminology is 
changed for sloped roof systems such that the term, ρ, represents the proportion of the force 
applied perpendicular to the plane of the sheathing that results in an in-plane force in the 
diaphragm. Additional discussion on this difference is discussed in the section: Analysis of purlins 
in sloped roof systems. 

Once the proportion relating the uniformly applied gravity load to the force generated in the 
diaphragm is determined, the mid-span lateral deflection of the diaphragm, Δmid, is calculated by  

 
 

2

mid
w L

Δ =
8G'

  panel

panel
 (8) 

where, wpanel is the total load contributing to the lateral displacement of the diaphragm after 
the dead loads are in place.  

  panel pw = u panel + gap  (9) 

The positive directions for forces and moments as they act on the purlin as well as the positive 
directions for displacements are shown in Figure 7. 

 
Figure 7 Positive directions for forces and displacements 
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Torsion 

As a point symmetric section, Z-sections are inherently subject to torsion. When tested 
according to the standard base test, there are additional torsion effects that must be considered. 
From first order load effects, the purlin is subject to uniform torsion along its length. Forces 
perpendicular to the plane of the sheathing are applied to the top flange at an eccentricity of, esx, 
relative to the shear center of the purlin. Additionally, the uniform lateral restraint provided by 
the sheathing, wrest, is applied at an eccentricity of esy, inducing torsion. Note that this eccentricity 
of the sheathing should incorporate the effective standoff, s, of the purlin as described by Seek 
and McLaughlin (2017). Considering these two effects, the first order uniform torsion is  

    1stt = w   1st e sy sxw e e  (10) 

Additional second order torsion effects are caused by the lateral deflection of the purlin. The 
second order torsion effects are approximated to have a parabolic distribution along the span. For 
several of the second order torsion effects, the direction of the torque is dependent upon the 
location of the purlin (eave or ridge). 

   2ndt = -w w2nd sx 1st e 2nd diaphe w w    
 (11) 

Restraining torque in torsion braces 

The uniform and parabolic torsion are balanced by the torsion braces along the span. The 
resisting moment by the braces is determined by displacement compatibility between the torsion 
brace and the purlin. The torsion brace is assumed to be rigid. The concentrated torque that the 
brace exerts on the purlin as the brace resists the first order uniform torsion is 

  1st 1stT = -C t L3    (12) 

where 

 C =

       
   

      
   

2 3

3 2

c c
1 2

L L1
4 c c

3 4
L L

 (13) 

The concentrated torque that the brace exerts on the purlin, T2nd, as the brace balances the 
second order torques with a parabolic distribution, is 

 2nd 2ndT = -C t L4  (14) 

where 

 C =

            
     

      
   

2 4 5

4 2

c c c
3 5 3

L L L1
15 c c

3 4
L L

 (15) 
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Forces to maintain equilibrium of braces 

The moment at each end of the brace must be balanced by a shear force at each end as shown 
in Figure 7. The brace shear force from the first order brace torque, V1st, is   

  
 1st sy sx

1st

2C w L σ×e - e ξ
V =

spa

3
 (16) 

The brace shear force from the second order brace torque, V2nd, is 

 
 1st diaph

2nd

2C w L Δ ξ
V =

spa

4
 (17) 

It should be noted that in calculating the shear forces resulting from the brace torque, not all 
of the torsion effects are included. Only the torsion effects in which the torsion is acting in the 
same direction on both purlins are included. For several of the second order torsion effects, the 
torsion at the eave acts opposite to the direction of the ridge, and thus the brace moments will 
balance without additional shear forces introduced to the purlin. 

In Figure 8, the brace concentrated torsions are shown in the positive direction as they act on 
the purlin. When the torsion acting on the purlin is positive, as is when there is a large lateral 
deflection and correspondingly large second order torsions, the shear force generated in the brace 
results in a downward force on the ridge purlin and an uplift force on the eave purlin. Conversely, 
when the torsion acting on the purlin is negative, as is common when the diaphragm is relatively 
stiff, the shear forces in the braces generate an uplift force on the ridge purlin and a downward 
force in the eave purlin. This distinction is important because depending on the direction of the 
shear forces, it can provide rationale for either the ridge purlin or the eave purlin to fail first. 

The shear forces required for equilibrium of the brace, as a result of the inclined principal axes 
of the purlin, cause an axial force, Pb, to be generated in the brace. Since the shear forces in each 
brace are largely equal and in the opposite direction, this axial force likewise is equal and opposite 
at each end of the brace. In Figure 8, the axial force generated is shown for the case when the 
brace torsion acts in the positive direction (the brace resists upslope rotation of the purlin). 

 

 
Figure 8. Brace shear transfer to purlin 

 
To both calculate cross section stresses and evaluate the strength of the purlin, the moment 

about the orthogonal x-axis is calculated from the combination of uniformly applied forces, 
parabolic second order forces and shear forces generated at the braces. For simplification of the 
stress calculation, the moment effects due to the uniform and parabolically distributed loads are 
grouped separately from the moment caused by the shear forces in the brace. The moment about 

V V

T

Pb Pb
T

eave ridge



13 
 

the x-axis from the uniformly and parabolically distributed loads at any location, z, along the 
span is 

  M = + w
                                               

2 3 42 2
x,dist 1st e 2nd

L z z L z z z
w w 2

2 L L 3 L L L
 (18) 

The moment about the x-axis resulting from the shear force in the brace is 
When z ≤ c 

 M = zx,V 1st 2ndV V  (19) 

When z ≥ c 

 M = cx,V 1st 2ndV V  (20) 

The total moment about the x-axis is the sum of the two moment effects 

M = M Mx x,dist x,V  (21) 

For evaluating the strength, typically the critical locations to evaluate the moment are at the mid-
span and at the brace location. The total moment about the x-axis at the mid-span (z = L/2) is 

   M = + w c  
2 2

x,mid 1st e 2nd 1st 2nd
L 5L

w w V V
8 48

 (22) 

Similarly, the total moment about the x-axis at the brace location (z = c) is  

     M = + w c
                        

4 32
x,c 1st e 2nd 1st 2nd

c L c c c
w w (L c 2 V V

2 3 L L L
 (23) 

Normal stresses from biaxial bending 

Bending normal stresses are mapped on the cross section. For simplicity, applied forces are 
oriented along the orthogonal x- and y- axes perpendicular and parallel to the web respectively. 
There are 3 contributions to the bending stress: (1) the applied distributed force parallel to the 
web, (2) the distributed force provided by the sheathing perpendicular to the web, and (3) the 
shear force generated by the torsion brace. As previously discussed, the force generated in the 
sheathing is directly proportional to the applied force parallel to the web of the purlin by the 
factor . Because the shear forces generated by the torsion brace are equal and opposite on 
adjacent purlins, an axial force will be generated in the brace that balances the unsymmetric 
bending effects. Therefore, the stress distributions that result from the torsion brace shear forces 
will conform to the constrained bending distribution. The stresses are mapped according to the 
modified moments of inertia about the orthogonal x- and y- axes, Imx and Imy, respectively 
introduced by Zetlin and Winter (1955).  

 




2
x y xy

my
x

I I I
I

I  (24) 

 




2
x y xy

mx
y

I I I
I

I
 (25) 
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The bending stresses can be mapped at coordinates x and y across the purlin cross section by 

 

xyxy

yx
b,mid

mx my my mx x

II
y σx

II-y -yx σ
f = M + - +

I I I I I

 
 

  
    

  
 
 

x,dist x,VM  (26) 

Warping torsion stresses 

The normal stresses caused by warping torsion, fw, are calculated 

w Nf E W ''      (27) 

where WN is the normalized warping function at a specific point on the cross section and ϕ" is the 
second derivative of the rotation function with respect to z due to the applied load. Guidance on 
calculating the normalized warping function for thin walled cross sections is provided in Cold-
Formed Steel Design (Yu, 2010). The normalized warping function is calculated at the same 
coordinates (x, y) across the cross section as the bending normal stresses. As part of the section 
property calculator in CUFSM (Li and Schafer 2010), the normalized warping function is 
calculated. 

There are 3 rotation functions to be considered:  1) uniform torsion along span, 2) parabolic 
distribution along span, 3) concentrated torque at brace locations (3rd points). The general rotation 
functions at any location, z, along the span are: 

Uniform torsion 

1st
u

t L
'' = cosh h sinh -1

GJ a 2a a

             
      

z z
tan  (28) 

Parabolic torsion distribution 
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Concentrated torsion at brace location 
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Combining equations 28, 29, and 30 into equation 27, the normal stress resulting from 
warping torsion at each coordinate on the cross section is calculated 

 w N u p bracef E W '' '' ''         (31) 
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Buckling analysis 

The bending and warping normal stresses are combined at each location across the cross 
section. As CUFSM is used to perform the finite strip buckling analysis, each flat and radius of 
the cross section is divided into 4 segments, resulting in a total of 37 nodes along the cross section. 
The stress distribution is determined for each of the critical locations: the mid-span and the brace 
location as shown in Figure 9. For each stress distribution at the mid-span and brace location, the 
maximum stress, fmax, is determined. The maximum stress typically occurs in the radius between 
the top flange and the web as a result of biaxial bending and torsion effects. This stress will be 
below the yield stress and corresponds to the calculated moment, Mx. To normalize the stresses 
to the point of first yield, all of the stresses in the cross section are scaled up by the ratio of the 
yield stress, Fy, to the maximum stress, fmax. The yield moment about the x-axis, My, is calculated 
by multiplying the moment about the x-axis, Mx, by the ratio Fy/fmax. With the scaled stress 
distribution, CUFSM v4.05 is used to perform the finite strip buckling analysis. The local and 
distortional critical buckling moments, Mcrℓ and Mcrd respectively, are determined by multiplying 
the critical buckling load coefficients from CUFSM by the yield moment, My, about the x-axis. 
The nominal local buckling moment, Mnℓ, is calculated according to the provisions of AISI S100 
Section F3.2 with the assumption that the compression flange is adequately braced to prevent 
global buckling and therefore, the nominal flexural stress for global buckling is the yield stress, 
Fn = Fy. Similarly, AISI S100 Section F4.1 is used to calculate the nominal flexural strength 
considering distortional buckling, Mnd. 

The minimum between the local and distortional nominal strength is the nominal moment 
strength, Mn. This nominal moment strength is compared to Mx. If Mn > Mx, the strength is 
satisfied for the applied loading. Note, the calculated nominal strength in this case does not 
necessarily represent the actual strength. Because the process includes an approximation of 
second order effects, the stress distribution will change at different load levels. If the actual failure 
load is required, iteration is required by varying the applied load until Mn approximately equals 
Mx. Iteration may be terminated when Mn is within ten percent of Mx. 

Global buckling  

The global buckling strength is not explicitly calculated as the determination of the true global 
buckling strength is affected by the partial restraining effects of the sheathing. Three modes of 
global buckling can occur: 1) lateral buckling of the entire span between the inflection points, 2) 
lateral-torsional buckling of the middle span between the braces and 3) lateral-torsional buckling 
of the outer span between the inflection point and the brace. The analysis procedure to calculate 
the local and distortional buckling strength considers the diaphragm restraint provided by the 
sheathing when calculating the biaxial bending and torsion stresses and approximates member 
geometric second order effects as the purlin deflects laterally. The procedure conservatively 
ignores the additional torsional restraint provided by the sheathing. As such, the analysis 
essentially captures the mode of global buckling interacting with local buckling for the first two 
buckling modes. For typically configured paired torsion bracing systems, as the system deforms, 
there is sufficient restraint between the sheathing and braces to prevent substantial twisting of 
the purlin and thus force local buckling before lateral-torsional buckling can occur. This behavior 
model is supported by base tests, where the typically observed failure modes are either local or 
distortional buckling at the mid-span or brace location.  

For typically configured paired torsion bracing systems, that is, systems with braces 
nominally near the third points, the third possible global buckling mode between the outer 
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inflection point and the first interior brace is unlikely to control the strength. For other 
configurations such that the distance between the inflection point and first interior brace is much 
longer than one third of the span length, the proposed procedure can be applied to this region of 
the span. It is recommended that the stresses be determined at the midpoint and 3/4 of the 
distance from the inflection point to the first interior brace.  

In lieu of a more detailed lateral torsional buckling analysis, it is also recommended that the 
torsional braces be checked to verify that they have sufficient stiffness to prevent substantial 
twisting of the purlin. A stiffness limit for braces at the frame lines limiting the lateral deflection 
of the top of the purlin at the brace to a deflection of ϕ(d/20) for LRFD load combinations is 
required in AISI S100 Section I6.4. It is recommended that this same stiffness limit be applied to 
torsion braces along the span. For the maximum torsion in the brace, T1st + T2nd, the rotation of 
the purlin should be limited to ϕ(1/20) rad. 

Comparison to base test 

The analysis procedure was compared to the series of base tests performed by Emde (2010). 
The series of tests was performed with 3 tests each on 4 four purlin cross sections. A summary of 
the purlin cross section and span layout is shown in Table 1. The purlins were spaced at 5.0 feet, 
and the overall width of the panel was 7.0 feet allowing for 1.0 foot of panel overhang from the 
centerline of the web. The overall width of the chamber was 8.0 feet leaving a gap of 6 in. on each 
side of the panel. 

Each system was tested utilizing the same diaphragm and clip configuration. The clip used 
was a “sliding tab” type with a thermal block at the base. The clip had a base to shoulder height 
of 2.375 in. and a thickness of the thermal block of 0.50 in. for a total clip height of 2.875 in. For a 
sliding tab clip, Seek and McLaughlin (2017) recommend that the effective standoff be 60 to 70 
percent of the clip base to shoulder height. No explicit recommendations are made to 
accommodate a thermal block, but it was assumed to be virtually rigid which would increase the 
effective standoff. For calculations, the effective standoff distance was overestimated by taking 
80 percent of the clip base to shoulder height (0.80 x 2.375 = 1.9) and added 0.5 in. to obtain an 
effective standoff distance rounded to 2.50 in. Initial analysis used a standoff distance of 0 in. The 
standoff distance of 2.50 in. showed better correlation to the test so, although the higher standoff 
distance was slightly overestimated, it is close to the actual value. 

 
Table 1: Summary of evaluated base tests 

Purlin Designation Span 
(ft) 

Brace Location, c 
(ft) 

Diaphragm Stiffness, G’ 
(lb/in.) 

8Zx057 27.0 10.5 230 
8Zx100 27.0 10.5 110 

10Zx057 30.0 11.5 300 
10Zx100 30.0 11.5 160 

 
The diaphragm was modeled as described by Seek et al. (2016). As noted in this study, the 

more heavily loaded thicker purlins (0.100 in.) placed a larger demand on the diaphragm. 
Considering the non-linear shear behavior of standing seam panel systems, it is reasonable to 
consider the diaphragm to be more flexible as it is subject to higher demands. The diaphragm 
stiffness shown in Table 1 was chosen such that the predicted deflection of the system 
approximately matched the measured deflections. A comparison of the measured and predicted 
deflections are provided in Table 2.  



17 
 

Additionally in Table 2, the measured yield stress of each purlin, the uniform dead load, ud, 
and the applied pressure at failure, up, are tabulated. It should be noted that in each test, the yield 
stress was only tested on the failed purlin. For calculations, it is assumed that, in each test, the 
purlin that did not fail has the same yield stress as the purlin that failed first.  

For each test, the strength is predicted at four locations: the mid-span and brace location for 
both the “eave” and “ridge” purlin. At each location, Mtest is the moment relative to the x-axis 
calculated from Eq. (22) for the midpoint location and Eq. (23) for brace point location. The cross 
section stresses at each location are determined, and the nominal flexural strength considering 
local and distortional buckling, Mnℓ and Mnd respectively, is calculated. The smaller of the local 
or distortional strength is considered to be the controlling flexural strength, Mn. To compare the 
predicted flexural strength to the calculated strength from the test, the ratio Mtest/Mn is calculated. 
The closer this value is to unity, the closer the method predicts the strength of the system. If the 
ratio is greater than 1, the predicted strength is less than the tested strength and is thus 
conservative. Conversely, if the ratio is less than one, the predicted strength is greater than tested 
and is unconservative. Considering each of the four locations investigated for a single test, the 
largest value of Mtest/Mn is considered to be the overall controlling value, i.e. the location that 
should first experience failure and thus control the strength of the system. A summary of the 
calculated values for each test are provided in Tables 3 to 6. An overall comparison of the results 
of Mtest/Mn is provided in Table 7.  

 
Table 2: Base test applied loads and deflections 

     Δmid 
Purlin Designation Test ID ud 

(psf) 
up 

(psf) 
Fy 

(ksi) 
Tested 
(in.) 

Predicted 
(in.) 

8Zx057 
1A 2.62 17.68 70.8 1.86 1.78 
1D 2.65 19.07 68.8 1.85 1.93 
1G 2.66 16.54 64.1 1.33 1.65 

8Zx100 
2D 3.18 37.65 79.1 6.17 5.97 
2E 3.18 27.15 79.1 5.29 4.27 
2F 3.20 37.87 79.1 5.94 5.93 

10Zx057 
3A 2.84 19.46 56.1 1.18 1.74 
3D 2.82 18.54 68.3 1.53 1.59 
3E 2.82 16.55 63.9 1.49 1.37 

10Zx100 
4A 3.46 45.02 67.1 5.59 5.72 
4C 3.47 40.02 65.8 5.75 5.06 
5A 3.47 44.57 65.4 4.72 4.96 

 
Results for 8Zx057 

Comparison of the predicted strength versus the tested strength of the 8Zx057 purlins are 
shown in Table 3. In Table 3, the purlin location (eave or ridge) that failed first is indicated with 
bold text and the predicted location of failure is indicated by shaded text enclosed in a box. 
Consistently, the predicted local buckling strength is 5 to 10 percent greater than the distortional 
buckling strength. Thus, in all tests the eave purlin at mid-span was predicted to fail first by 
distortional buckling and the predicted moment is in line with the failure moment. Although for 
each test, the exact failure mode was not reported by Emde, the most common failure mode was 
reported to be distortional buckling at mid-span. For test 1D, the ridge purlin failed first which 
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was not predicted. However, the difference in Mtest/Mn between the eave and ridge purlin is small 
(1.11 versus 1.06). 

Results for 8Zx100 

The comparison of the predicted strength versus the tested strength of the 8Zx100 purlins is 
shown in Table 4. Consistently, the predicted distortional buckling strength is less than the local 
buckling strength and therefore will control the strength. In all cases, the predicted mode of 
failure is distortional buckling at the ridge brace location. However, in all tests, the failure actually 
occurred at the eave purlin although the actual location (mid-span or brace location) was not 
reported. Test 2E failed at a load level significantly lower than both the other two tests and lower 
than predicted. Emde reported that premature failures occurred in several tests as a result of 
failures in the connection between the torsional brace and the purlin. It is believed that connection 
failure is the result of the lower supported load in Test 2E. It should also be noted that in the 
evaluation of the predicted strength, it is assumed that the torsional brace is perfectly rigid. If the 
brace is modeled as flexible, the moments in the brace are reduced along with the balancing shear 
forces. This change in the shear forces can shift the predicted location of failure from the ridge to 
the eave. 

 
Table 3: Summary of results: 8Zx057 

Test 
ID  

Location Mtest 

(k-ft) 
Fy/f Local Ld. 

Factor 
Dist. Ld. 
Factor 

Mnℓ 
(k-ft) 

Mnd 
(k-ft) 

Mn 
(k-ft) 

 Mtest/Mn 
 

1A 

Eave: Mid-Span 7.04 1.46 0.60 0.67 7.34 6.88 6.88 1.02 
Eave: Brace 6.68 1.53 0.62 0.66 7.40 6.82 6.82 0.98 
Ridge: Mid-Span 6.74 1.59 0.64 0.61 7.86 6.95 6.95 0.97 
Ridge: Brace 6.41 1.67 0.67 0.60 7.94 6.86 6.86 0.93 

1D 

Eave: Mid-Span 7.52 1.32 0.62 0.71 7.16 6.79 6.79 1.11 
Eave: Brace 7.14 1.39 0.65 0.67 7.28 6.64 6.64 1.07 
Ridge: Mid-
Span 7.23 1.44 0.66 0.63 7.72 6.84 6.84 1.06 
Ridge: Brace 6.88 1.51 0.70 0.61 7.81 6.70 6.70 1.03 

1G 

Eave: Mid-Span 6.66 1.39 0.67 0.73 6.90 6.44 6.44 1.03 
Eave: Brace 6.33 1.47 0.68 0.73 6.93 6.44 6.44 0.98 
Ridge: Mid-Span 6.34 1.47 0.67 0.73 6.90 6.45 6.45 0.98 
Ridge: Brace 6.03 1.54 0.68 0.73 6.94 6.44 6.44 0.94 
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Table 4: Summary of results: 8Zx100 

Test 
ID  

Location Mtest 

(k-ft) 
Fy/f Local Ld. 

Factor 
Dist. Ld. 
Factor 

Mnℓ 
(k-ft) 

Mnd 
(k-ft) 

Mn 
(k-ft) 

 Mtest/Mn 
 

2D 

Eave: Mid-Span 13.07 1.27 1.72 1.90 16.61 15.96 15.96 0.82 
Eave: Brace 12.31 1.23 2.54 1.52 15.13 13.60 13.60 0.91 
Ridge: Mid-Span 14.69 1.13 1.76 1.68 16.63 15.40 15.40 0.95 
Ridge: Brace 14.07 1.10 2.30 1.45 15.55 13.76 13.76 1.02 

2E 

Eave: Mid-Span 9.96 1.67 1.73 1.71 16.63 15.49 15.49 0.64 
Eave: Brace 9.41 1.66 2.22 1.50 15.62 13.97 13.97 0.67 
Ridge: Mid-Span 10.62 1.59 1.68 1.65 16.91 15.58 15.58 0.68 
Ridge: Brace 10.15 1.59 2.06 1.49 16.09 14.37 14.37 0.71 

2F 

Eave: Mid-Span 13.15 1.29 1.71 1.83 17.01 16.17 16.17 0.81 
Eave: Brace 12.39 1.26 2.48 1.51 15.66 14.04 14.04 0.88 
Ridge: Mid-Span 14.77  1.14 1.70 1.69 16.80  15.60  15.60  0.95 
Ridge: Brace 14.15  1.11 2.22 1.46 15.74  13.97  13.97  1.01 

 

Results for 10Zx057 

The results comparing the predicted strength versus the tested strength of the 10Zx057 purlins 
are shown in Table 5. Like previous tests, for Tests 3D and 3E, the distortional buckling strength 
is less than the local buckling strength and therefore predicted to control. For test 3A however, 
the local buckling strength is less than the distortional buckling strength. Emde reported lip local 
buckling to be one of the observed modes of failure. In all cases the eave purlin was predicted to 
fail first which matched the behavior observed in the tests. In all cases, Mtest/Mn is conservative, 
but not overly so. 

Results for 10Zx100 

The results comparing the predicted strength versus the tested strength of the 10Zx100 purlins 
are shown in Table 6. In all cases, the distortional buckling strength is less than the local buckling 
strength and thus controls the overall strength of the purlin. It should be noted that at the mid-
span location, the distortional buckling strength is fairly close to the local buckling strength. 
However, at the brace location, due to the significant change in the distribution of the stresses 
(see Figure 9) as a result of the concentrated brace torque, there is a significant drop in the 
distortional buckling strength relative to the local buckling strength. In all cases, the ridge purlin 
is predicted to fail at the brace location. In the tests, the ridge purlin was the first to fail although 
the exact location along the span was not reported. In all cases the predicted strength was less 
than the tested strength, thus providing a conservative predicted strength.  

Like the tests on the 8Zx100 purlins, the 10Zx100 purlins placed large demands on the torsion 
braces. Although the braces were modeled as rigid, it is likely that they did not behave as rigid. 
As flexibility of the brace is introduced, the brace moments and the balancing shear forces 
decrease. This change in the shear force will decrease Mtest for the ridge purlin and bring the ratio 
of Mtest/Mn closer to unity. 
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Table 5: Summary of results: 10Zx057 

Test 
ID  

Location Mtest 

(k-ft) 
Fy/f Local Ld. 

Factor 
Dist. Ld. 
Factor 

Mnℓ 
(k-ft) 

Mnd 
(k-ft) 

Mn 
(k-ft) 

 Mtest/Mn 
 

3A 

Eave: Mid-Span 9.59 1.29 0.52 0.71 8.42 8.49 8.42 1.14 
Eave: Brace 9.05 1.38 0.54 0.68 8.65 8.46 8.46 1.07 
Ridge: Mid-Span 9.07 1.45 0.47 0.66 8.64 8.77 8.64 1.05 
Ridge: Brace 8.59 1.55 0.48 0.64 8.80 8.76 8.76 0.98 

3D 

Eave: Mid-Span 9.18 1.61 0.40 0.48 9.16 8.67 8.67 1.06 
Eave: Brace 8.67 1.72 0.42 0.47 9.43 8.69 8.69 1.00 
Ridge: Mid-Span 8.68 1.78 0.42 0.52 9.76 9.37 9.37 0.93 
Ridge: Brace 8.22 1.90 0.43 0.50 9.94 9.32 9.32 0.88 

3E 

Eave: Mid-Span 8.34 1.67 0.44 0.46 8.96 8.05 8.05 1.04 
Eave: Brace 7.87 1.75 0.46 0.45 9.00 7.89 7.89 1.00 
Ridge: Mid-Span 7.84 1.80 0.41 0.55 8.82 8.74 8.74 0.90 
Ridge: Brace 7.42 1.91 0.42 0.53 8.97 8.68 8.68 0.85 

 
Table 6: Summary of results: 10Zx100 

Test 
ID  

Location Mtest 

(k-ft) 
Fy/f Local Ld. 

Factor 
Dist. Ld. 
Factor 

Mnℓ 
(k-ft) 

Mnd 
(k-ft) 

Mn 
(k-ft) 

 Mtest/Mn 
 

4A 

Eave: Mid-Span 19.36 1.12 1.28 1.48 19.99 19.34 19.34 1.00 
Eave: Brace 18.13 1.10 1.81 1.26 19.91 16.83 16.83 1.08 
Ridge: Mid-Span 21.35 1.02 1.26 1.49 19.97 19.45 19.45 1.10 
Ridge: Brace 20.37 1.01 1.61 1.33 20.31 17.65 17.65 1.15 

4C 

Eave: Mid-Span 17.54 1.23 1.24 1.35 19.71 18.70 18.70 0.94 
Eave: Brace 16.44 1.23 1.68 1.18 20.18 16.68 16.68 0.99 
Ridge: Mid-Span 18.96 1.14 1.23 1.36 19.71 18.80 18.80 1.01 
Ridge: Brace 18.07 1.14 1.54 1.23 20.11 17.27 17.27 1.05 

5A 

Eave: Mid-Span 19.20 1.11 1.28 1.48 19.61 18.97 18.97 1.01 
Eave: Brace 17.98 1.09 1.84 1.29 19.55 16.66 16.66 1.08 
Ridge: Mid-Span 21.16 1.01 1.29 1.60 19.68 19.46 19.46 1.09 
Ridge: Brace 20.19 1.00 1.63 1.43 20.01 17.74 17.74 1.14 
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(a) mid-span                           (b) brace location 

Figure 9. Distribution of normal stresses  

Summary of base test results 

A summary of all analytical comparisons to the test results is provided in Table 7. Results are 
organized by test, summarizing the ratio of Mtest/Mn at each investigated location. On the right 
side of the table, the controlling value for Mtest/Mn for each test is shown in addition to the average 
value for the series of tests for each profile and the coefficient of variation. For each test, the purlin 
failing first is designated by shaded cells and the location predicted to fail first is indicated by a 
bold outline and bold text. In all but one test, the predicted strength is less than the tested 
strength, indicating a conservative prediction of strength. The one case that did not conform with 
the rest of the results, test 2E, it is believed failed prematurely as a result of the failure of the 
torsion brace connection. Eliminating this one anomaly, the overall average of Mtest/Mn is 1.07. 

In most cases, the methodology was able to predict whether the eave or ridge purlin failed 
first, with two major exceptions. The first exception was for test 2D where the difference in 
predicted strength between the eave and ridge purlin was small and could have been as a result 
of the assumed yield strength of the eave purlin. The second exception is for tests 2D, 2E, and 2F. 
In these tests, failure occurred in the eave but was predicted at the ridge. The braces were modeled 
as rigid, however, if modeled as flexible, the brace moments and corresponding shear forces 
decrease, decreasing the moment at the ridge and increasing the moment at the eave. 
Correspondingly this could shift the predicted location of failure from the eave to the ridge.  
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Table 7: Summary of Mtest/Mn 

 
 

Diaphragm stiffness for strength evaluation 

The strength of Z-purlin roof systems is a function of the stiffness of the diaphragm. The 
stiffness of the diaphragm affects the lateral restraint force provided by the sheathing – in general 
the greater the stiffness of the diaphragm, the larger the force interacting between the purlin and 
the diaphragm. This in-plane force in the diaphragm has a large impact both on biaxial bending 
stresses and the torsion that the purlin is subjected to. Additionally, second order effects are 
driven by the lateral deflection of the diaphragm and can significantly impact the strength of a 
purlin system. 

The shear behavior of standing seam diaphragms typically exhibits non-linear behavior with 
an initial stiffness approximately linear then softening with increase shear force. The load-
deflection behavior of a standing seam diaphragm as tested according to the Cantilever Test 
Method (AISI 2017b), is shown in Figure 10. Two test curves are shown. The lower curve shows 
the tested load-deflection behavior of the standing seam panel systems without typical eave 
fastening – meant to represent the stiffness of the “field” of the diaphragm. The typical eave 
fastening mechanism in in-situ roof systems provides resistance to seam slippage and therefore 
increases the diaphragm stiffness. The upper curve shows the tested load-deflection behavior of 
the standing seam panel system tested with the typical eave attachment. The stiffness of 
diaphragm systems, G’, is calculated based on the linear behavior up to the 40 percent of the 
maximum force sustained by the diaphragm to capture the initial linear stiffness. This stiffness is 
shown in Figure 10 for the diaphragm tested without eave attachment.  

In the previous section, the calculated lateral deflection of the diaphragm was compared to 
the measured lateral deflection in the series of base tests. As thicker purlins place greater 
demands on the diaphragm, the stiffness of the diaphragm effectively decreases. Plotted in Figure 
10 are lines representing the diaphragm stiffness used in the strength prediction calculations that 
were calibrated from measured lateral deflection in the base tests. The end points of the lines 
represent the peak shear in diaphragm if behaving linearly. 

The base tests were performed with a 1 in. x 1 in. x ¼ in. angle fastened along each of the panel 

Controlling
Test ID Midpoint Brace Point Midpoint Brace Point Value

1A 1.02 0.98 0.97 0.93 1.02

1D 1.11 1.07 1.06 1.03 1.11

1G 1.03 0.98 0.98 0.94 1.03

2D 0.82 0.91 0.95 1.02 1.02

2E 0.64 0.67 0.68 0.71 0.71

2F 0.81 0.88 0.95 1.01 1.01

3A 1.14 1.07 1.05 0.98 1.14

3D 1.06 1.00 0.93 0.88 1.06

3E 1.04 1.00 0.90 0.85 1.04

4A 1.00 1.08 1.10 1.15 1.15

4C 0.94 0.99 1.01 1.05 1.05

5A 1.01 1.08 1.09 1.14 1.14

0.04

0.16

0.04

0.04

Average COV

1.054

0.914

1.078

1.113

Eave Ridge
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ends. This angle helps to prevent spreading of the seams at the panel end and premature failure 
of the panel. This end attachment also helps to restrict seam movement, so it is expected that this 
attachment will increase the diaphragm stiffness relative to the “field” stiffness of the diaphragm. 

Comparing the calibrated stiffness used in the strength prediction calculations, as shown in 
Figure 10, the stiffness of all cases is less than that predicted for the “field” diaphragm by the 
cantilever test method (467 lb/in.), even considering that the stiffness should be increased by the 
edge angle attachments. For the thinner purlins (10Zx057 and 8Zx057), the predicted linear 
diaphragm stiffness is 300 lb/in. and 230 lb/in. respectively. The predicted peak shear in the 
“field” diaphragm from the cantilever base test is 68 lb/ft. The peak shear force predicted for the 
10Zx057 and 8Zx057 tests is 69.6 lb/ft and 61.0 lb/ft respectively. These diaphragm shear forces 
are in the range of the peak shear force in the tested diaphragm without eave attachment. The 
total shear demand for the 10Zx057 purlin is greater than for the 8Zx057 purlin. It would be 
expected that as a result of the higher net shear demand in the 10Zx057 system, the calibrated 
stiffness would be less. The 10Z purlins were tested on a longer span than the 8Z purlins, which 
ultimately has some effect on the predicted stiffness/shear demand. 

 
Figure 10. Comparison of diaphragm stiffness 

 
The thicker purlins put much larger demands on the diaphragm. Assuming a linear stiffness, 

the calibrated stiffness of the 10Zx100 purlin is 160 lb/in. while the stiffness of the 8Zx100 purlin 
is 110 lb/in. Extending this stiffness to the maximum predicted shear demand in the diaphragm 
(121.1 lb/ft for 10Zx100 tests and 97.7 lb/ft for the 8Zx100 tests) extends the curves well beyond 
the tested range from the cantilever test. 

To get to the true behavior of the diaphragm as it interacts with the purlin will likely require 
the diaphragm to be analyzed as non-linear. Additionally, near the ends of the spans where the 
shear demand is higher, there is likely slippage occurring between the clip and the panel. Both of 
these effects have the potential to reduce the peak shear demand calculated in the sheathing. 
Additional work is required to better understand this behavior. It is a reasonable and 
conservative approximation to calibrate the stiffness of the diaphragm from base tests and use 
the linear stiffness in predicting the strength.  
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Analysis of purlins in sloped roof systems 

The previous section has shown that the methodology is effective in not only predicting the 
capacity of purlins in roof systems with paired torsion braces, but also predicts some of the 
nuances such as failure away from the mid-span at the brace location and failures at the ridge 
versus the eave purlin. As the methodology is applied to real systems there are several important 
modifications. First, for real systems, they are not subject to some of the load imbalances inherent 
in the base test. Additionally, in the base test, although the purlins are typically spaced at 5 feet, 
the panel width is typically only 7 feet so the depth of diaphragm tributary to each purlin is only 
3.5 feet. In a real system, with purlins spaced at 5 feet the depth of diaphragm tributary to each is 
5 feet, which effectively increases the diaphragm stiffness relative to the purlin. And finally, slope 
effects must be considered in real roof systems. As shown in Figure 11, as the slope of the roof 
increases, the lateral deflection changes, shifting from an upslope translation to a downslope 
translation at higher slopes. These downslope forces generated can substantially change the 
distribution of stresses in the cross section. Figure 12 shows the difference in stress distribution 
between 0:12, 2:12 and 4:12 slopes. 

 
a) slope 0:12 

 
b) slope 2:12 

 
c) slope 4:12 

Figure 11. Variation of diaphragm deflection with roof slope 

diaph

diaph

diaph
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a) slope 0: 12    b) slope 2:12   c) slope 4:12 

Figure 12. Variation in stress distribution with varied slope 
 
There are several changes that are made to the analysis procedure when evaluating real 

systems. The first major change is with the proportion of the applied load that results in a uniform 
force in the diaphragm. Previous applications of the component stiffness method Murray et al. 
(2009) from which the methodology is based defined the term, , as the proportion of the 
distributed force applied in the gravity direction that results in a distributed force in the 
diaphragm. When determining the cross section stresses in a sloped roof system, it is more 
meaningful to define the term, ρ, as the proportion of the distributed force applied perpendicular 
to the sheathing (parallel to the web) that results in a distributed force in the diaphragm. This 
simplifies the procedure for both gravity and uplift loads. As was noted in the previous section, 
the change in terminology is used to make a distinction between flat roof systems (as with the 
base test) and sloped roof systems. For a flat roof system, gravity is directed perpendicular to the 
sheathing, therefore  and ρ will have the same result in this case. 

The procedure for evaluating purlins in real roof systems follows the same pattern as 
described previously for evaluating the base test. The equations for evaluating both simple span 
systems and the interior span in a multi-span system (fixed-fixed end conditions) are provided in 
Appendix 1. The procedure is outlined below. 

1.   Calculate ρ, the proportion of the load perpendicular to sheathing that results in a uniform 
force between the purlin and diaphragm in the plane of the diaphragm. The term wrest 
represents the uniform force transferred between the purlin and diaphragm along the 
span. 

2.  Calculate the mid-span lateral displacement of the diaphragm, Δmid 
3.  Calculate the torsion effects on the purlin. Note that torsion effects are simplified for real 

systems because they are not subject to some of the load imbalances inherent in the base 
test. The torsion effects include  

a. Uniformly distributed first order torsion, t1st, resulting from the applied load 
acting eccentrically on the flange of the purlin, and the lateral restraint provided 
by the sheating acting at the effective standoff distance.  
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b. Parabolically distributed second order torsion, t2nd, resulting from the lateral 
deflection of the system of purlins. 

4.  Calculate the concentrated restraining torque at the torsion brace locations considering 
first order effects, T1st, and second order effects, T2nd. This restraing torque is calculated by 
displacement compatibility between the torsion braces and the purlin at the brace 
location. The torsion braces are assumed to be rigid. 

5.  Calculate additional interacting forces between the purlin and the braces to maintain 
equilibrium of the braces. The moments at each end of the torsion brace are balanced by 
shear forces, V, as shown in Figure 8 that must be resisted by the purlin. The shear forces 
transferred to the purlin result in a small axial force, Pb, in the brace as the result of the 
asymmetric bending of z-purlins. 

6.  At each critical location along the span of the purlin, calculate the nominal local and 
distortional buckling flexural strength, Mnℓ and Mnd respectively. The critical locations to 
calculate the strength are the mid-span location and brace location.   

a. Calculate the moment about the x-axis, Mx. 
b. Calculate the biaxial bending stresses in the purlin cross section, fb. 
c. Calculate the warping torsion normal stresses, fw, in the purlin cross section 

resulting from the uniformly distributed torsion, parabolically distributed torsion 
and the concentrated torque at the brace locations. 

d. Sum the bending stresses and warping stresses at each location across the cross 
section and find the maximum stress in the cross section, fmax. 

e. Scale the stresses in the cross section to first yield by multiplying the stress at each 
location by the factor Fy/fmax. 

f. Scale the moment about the x-axis, Mx, with the same stress scale factor (Fy/fmax) 
to determine the yield moment, My. 

g. Perform finite strip buckling analyis (CUFSM) using the scaled stresses along the 
cross section. From the signature curve, determine the respective local and 
distortional buckling load factors. 

h. Calculate the critical local and distortional buckling moments, Mcrℓ and Mcrd, 
respectively, as the product of the buckling load factor and the yield moment, My. 

i. Calculate the nominal local buckling moment, Mnℓ, according to AISI S100 Section 
F3.2 with Fn = Fy. As stresses are calculated considering the biaxial bending effects 
of interaction with the sheathing and second order torsion effects, this calculation 
is an approximation of the local buckling interacting with global buckling strength. 

j. Calculate the nominal distortional buckling moment, Mnd, according to AISI S100 
Section F4.1.  

k. The nominal moment strength, Mn, is the minimum of the local and distortional 
buckling strength at the location being investigated. 

l. Compare the nominal moment strength to moment about the x-axis at the location 
being investigated. If Mn > Mx, the purlin has sufficient capacity at the checked 
location to support the uniform load. Note, the calculated nominal strength in this 
case does not necessarily represent the actual strength. Because the process 
includes an approximation of second order effects, the stress distribution will 
change at different load levels. If the actual failure load is required, iteration is 
required by varying the applied load until Mn ≈ Mx. Iteration may be terminated 
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when Mn is within ten percent of Mx.  
7.  Compare the ratio of Mx/Mn at each of the critical locations along the span. The maximum 

ratio of Mx/Mn provides the location that will control the strength of the design. 

Predicted strength of sloped roofs 

Historically, the philosophy of the design of sloped roof systems has been to determine the 
strength of the purlin system in a flat roof condition using the base test and any slope effects are 
resisted by the anchorage system. The lateral deflection of the system is limited to L/360 for most 
systems and L/180 for systems with torsion braces. While this approach is generally considered 
to be conservative, it is hypothesized that increased capacity can be realized by including slope 
effects to evaluate the actual strength. It is also desirable to relax the lateral deflection limits, 
which is reasonable when the strength of the purlin directly incorporates the effects of lateral 
deformations. 

To test this hypothesis, a system of purlins was evaluated on slopes varying from a 0:12 pitch 
to a 4:12 pitch. To provide a baseline for comparison, the system of purlins evaluated is the same 
as used in this report for the base test evaluation. From the series of tests, two purlins were 
evaluated: an 8Zx057 (Test ID 8Z16-1A) and an 8Zx100 (Test ID 8Z12-2D). The measured cross 
section dimensions reported by Emde (2010) were used. The purlins were analyzed in a multi-
span condition (fixed-fixed ends) with the purlin span, L = 27 feet, and the torsion braces spaced 
at c = 10.5 feet from the ends. The diaphragm stiffness values were the same as used in the base 
test evaluation. Test parameters are summarized in Table 8. 
 

Table 8. Purlin System Analysis Parameters 

Purlin Fy G’ standoff, s eccentricity, esx 
 (ksi) (lb/in.) (in.) (in.) 
8Zx057 70.8 230 2.5 1/3b = 0.643 
8Zx100 79.1 110 2.5 1/3b = 0.665 

 
The relationship between the predicted maximum supported uniform load in the gravity 
direction and roof slope is shown in Figure 13 for the 8Zx057 purlin and in Figure 14 for the 
8Zx100 purlin. The maximum supported uniform load is used as a comparison rather than the 
moment at failure because the moment at failure fluctuates considerably as a result of the brace 
shear. In both Figure 13 and Figure 14, the strength predicted by the R-factor derived from the 
base test is also plotted as a base line. The small increase in the supported uniform load derived 
from the base test with increasing roof slope results from the subdivision of the gravity load into 
components perpendicular and parallel to the plane of the sheathing. For the 8Zx057 purlin, at 
the flat roof condition, the strength predicted from the Direct Strength method is slightly less than 
that predicted by the base test. The strength predicted from the base test is extrapolated from a 
simple span configuration to the multi-span fixed-fixed configuration. The fixed-fixed condition 
requires a larger uniform loading to reach the equivalent mid-span moment of the fixed-fixed 
condition. When analyzed using the proposed direct strength method, the larger uniform loading 
required to reach the equivalent mid-span simple span moment causes larger lateral deflection 
which in turn results in increased predicted biaxial bending stresses. The increased stresses shift 
towards the web, predicting local buckling of the web. In Table 9, the calculated local and 
distortional buckling load factors at both the mid-span and brace location are provided, as well 
as the predicted maximum supported load predicted from the buckling load factors with the 
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controlling load highlighted. Table 9 also reports the uniform load equivalent to the base test R-
factor as well as the predicted buckling load factors from the base test for comparison to the 
sloped multi-span system results. Table 10 presents the stress scale factors, predicted failure mode 
and location, as well as the lateral deflection of the system. 
 

 
Figure 13. Maximum uniform load versus roof slope, 8Zx057  

 
As the slope of the roof system increases, and the downslope component of the gravity load 
begins to contribute downslope forces to the diaphragm, the lateral deflection of the purlins 
decreases. Correspondingly, the brace moments decrease as second order torsion decreases and 
the stress scale factor increases, indicating the redistribution of stresses away from the web. The 
supported uniform load increases as a result of the change in distribution of stresses. With 
increasing slopes, the failure mode changes. At slopes higher than a 3:12 pitch, the lateral 
deflection of the purlin transitions downslope. The lateral bending effect in this case shifts stresses 
towards the flange tips. The combination of lateral bending and concentrated torsion at the brace 
location causes the failure mode to shift to local buckling of the flange stiffener at the brace 
location. This shift in stresses causes the supported uniform load to rapidly decline. However, in 
this case, peak stresses occur in the tension flange, so additional strength may be realized by 
considering inelastic reserve capacity.  
  

Table 9. Buckling load factors and maximum uniform loads for 8Zx057 purlin 
 Buckling Load Factors Uniform Load (lb/ft)  

 Mid-span Brace Mid-span Brace 
Min. 

 Local Dist. Local Dist. Local Dist. Local Dist. 
Base Test 0.60 0.67 0.62 0.66 - - - - 216 

0:12 0.59 1.02 0.92 0.83 198 218 230 203 198 
0.5:12 0.59 0.93 0.85 0.78 206 220 242 214 206 
1:12 0.58 0.85 0.78 0.74 215 223 255 227 215 
2:12 0.58 0.71 0.61 0.67 237 230 285 266 230 
3:12 0.58 0.59 0.52 0.82 262 237 241 257 237 
4:12 0.70 0.59 0.63 1.00 261 221 201 216 201 
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Table 10. Analysis comparisons 8Zx057 purlin 

   Failure  Deflection 
 Max 

wn 
Fn/Fy Up/Down Location Mode 

Brace 
Moment 

Lateral 
Ratio 

L/ 
 (lb/ft)     (lb-ft) (in.)  
Base 
Test 

216 1.457 Downhill Mid Dist. 387 1.86 174 

0:12 198 1.406 Uphill Mid Local 2935 2.78 117 

0.5:12 206 1.406 Uphill Mid Local 2474 2.45 132 

1:12 215 1.414 Uphill Mid Local 1895 2.09 155 

2:12 230 1.457 Uphill Mid Dist. 305 1.24 260 

3:12 237 1.578 Uphill Mid Dist. -1529 0.28 1166 

4:12 201 1.374 Downhill Brace Local -2675 -0.59 553 

 
The relationship between the roof slope and the supported uniform load as shown in Figure 

14 for 8Zx100 is similar to that of the 8Zx057 purlin. At the flat slope, the strength predicted by 
the direct strength method is less than that predicted by the base test R-factor. With increasing 
slope, the strength predicted by the direct strength method increases with a maximum at a pitch 
of approximately 3:12, then begins to dramatically decrease. Although the overall trends between 
the thicker and thinner purlin are similar, the predicted behavior as summarized in Tables 11 and 
12 for the 8Zx100 purlin is different. For the thicker purlin, the large lateral deflections cause 
substantial second order torsions which causes large torsion brace moments. The predicted 
failure mode is distortional buckling at the brace location. 

As the slope increases, the second order torsion decreases and the predicted supported 
uniform load increases. Similar to the thinner purlin, as the lateral deflection of the purlin 
transitions downslope at pitches greater than 3:12, the predicted strength decreases. As for the 
thin purlin, the tension stresses are significantly higher than the compression stresses, so 
additional strength can likely be realized by considering inelastic reserve capacity. 

 

 
Figure 14. Maximum uniform load versus roof slope, 8Zx100 
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Table 11: Buckling load factors and maximum uniform loads for 8Zx100 purlin 
 Buckling Load Factors Uniform Load (lb/ft)  

 Mid-span Brace Mid-span Brace 
Min. 

 Local Dist. Local Dist. Local Dist. Local Dist. 

Base Test 1.72 1.90 2.54 1.52 - - - - 435 

0:12 1.59 N/A 3.21 2.07 437 N/A 376 370 370 

0.5:12 1.59 3.5 3.1 1.86 466 472 412 393 393 

1:12 1.58 2.43 2.83 1.7 498 506 464 431 431 

2:12 1.57 1.74 2.41 1.35 581 553 590 511 511 

3:12 1.55 1.18 1.57 1.16 696 588 824 689 588 

4:12 1.94 1.02 1.73 1.88 692 543 530 508 508 

 
Table 12: Analysis comparisons 8Zx100 purlin 

   Failure  Deflection 
 Max 

wn 
Fn/Fy Up/Down Location Mode 

Brace 
Moment 

Lateral 
Ratio 

L/ 
 (lb/ft)     (lb-ft) (in.)  
Base 
Test 

435 1.105 Uphill Brace Dist. 5362 6.17 53 

0:12 370 1.017 Uphill Brace Dist. 13777 5.44 60 

0.5:12 393 1.048 Uphill Brace Dist. 12977 4.95 65 

1:12 431 1.075 Uphill Brace Dist. 11419 4.30 75 

2:12 511 1.156 Uphill Brace Dist. 8541 3.30 98 

3:12 588 1.210 Downhill Mid- Dist. -28 1.21 268 

4:12 508 1.044 Downhill Brace Dist. -8796 -1.00 323 

 
It should be noted for both of the purlins evaluated, at low slopes, the predicted lateral 

deflections do not satisfy the L/180 lateral deflection limit. If the roofing system and its external 
connections are able to accommodate the predicted deflections, it is reasonable to relax the lateral 
deflection limit for deflections calculated for strength limit states. It should also be noted that the 
predicted demands on the torsion braces can be much higher in a sloped roof system than is tested 
in the base test method. This additional demand should be considered when extrapolating the 
base test method to sloped roof systems.  

Conclusions 

A methodology is presented that uses the Direct Strength Method to predict the local and 
distortional buckling strength of Z-sections in roof systems with one flange connected to 
sheathing and paired torsion braces along the span. The methodology considers the diaphragm 
interaction between the purlin and sheathing as well as the restraint provided by the torsional 
braces to calculate the biaxial bending and torsion stresses in the cross section. These stresses can 
vary substantially from the traditionally assumed constrained stress distribution which in turn 
impacts the predicted strength. 

To validate the methodology, it is compared to a series of base tests. The correlation between 
the base tests and the methodology is good and provides a conservative approximation of the 
strength. The methodology is able to provide rationale and predict a buckling failure away from 
the mid-span at the brace location as well as predict the failure of the eave purlin versus the ridge 
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purlin in the base test. 
The methodology is also adapted to evaluate sloped roof systems. Equations are provided for 

both simple span and multi-span interior roof systems. There are several small differences and 
simplifications that can be made for evaluating these real systems versus base tested systems 
which are highlighted. To demonstrate the impact of roof slope on the distribution of stresses and 
the predicted strength, several purlin sections are evaluated for slopes varying from 0:12 to 4:12. 
For multi-span systems with very low slopes, the strength predicted by the proposed 
methodology is less than that predicted by the base test as a result of the higher loads and 
corresponding second order effects in the multi-span system. As the roof slope increases, stress 
distributions shift more towards the constrained bending distribution and show an increase in 
strength. At very steep slopes (4:12 or greater), as the roof system begins to deflect downslope, 
stress distributions change causing a rapid decrease in predicted strength. In this case, maximum 
stresses occur in the tension flange and it is expected that the purlin possesses substantial inelastic 
reserve capacity. It should also be noted that the predicted failure mechanism may change as the 
stress distributions change with increasing slope. For the investigated examples, while predicting 
the strength from base tests is conservative, the base test is not exactly representative of the 
behavior of the sloped roof.  

Diaphragm stiffness in analysis is calibrated such that the measured lateral deflection in the 
base test matches the lateral displacement in the prediction methodology. To match the deflection 
in analysis, a stiffness that is much less than is derived from the cantilever test method must be 
used. As demand on the diaphragm increases, the stiffness must be reduced, indicating that to 
replicate the true behavior of the diaphragm it must be analyzed as non-linear. More work is 
required to better understand this behavior. It is a conservative approximation to use the linear 
stiffness calibrated to base tests as this approximation overestimates the shear demand in the 
diaphragm. 

The analysis procedure does not explicitly calculate the global buckling strength of the system 
of purlins. In reasonably configured systems (torsion braces nominally near the third points), the 
braces prevent substantial rotation of the purlin, preventing a lateral torsional buckling mode 
from developing. As the proposed methodology incorporates first and approximated second 
order biaxial bending and torsion stresses, it essentially captures the local buckling interacting 
with the global buckling mode. Tests of such systems typically fail either by local or distortional 
buckling as a result of the combined restraint between the braces and the sheathing. Additional 
work is required to obtain the true global buckling strength. In lieu of a more detailed buckling 
analysis, it is recommended that the torsion braces have a stiffness that limits the rotation of the 
purlin at the brace location to 1/20.   
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Appendix 1 – Summary of equations for sloped roof systems – simple span and multi-span 
interior bay 

The following equations apply to simple span or multi-span interior sloped roof systems. The 
equations are based on the case where the system is nominally uniformly loaded, spacing and 
loading is nominally equal between adjacent purlins.   

Uniform restraint force between purlin and sheathing 

  restw w cos    (A.1) 

Where 
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Simple span  
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 Multi-span interior          
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 Simple and multi-span 
           
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where  
        G’   = stiffness of diaphragm, lb/in.  
       L    = purlin span 
       spa   = purlin spacing (tributary panel width) 

       Imy          = modified moment of inertia = 
 2

x y xy

x

I I I

I
 

        c    = distance from support location to brace location (see Figure 1) 
 

Approximate mid-span lateral deflection 

   
2
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L

Δ = w
8G'

   cos sin
spa

 (A.6) 

Torsion 

First order uniformly distributed torsion 

   1stt =    sy sxw cos e e  (A.7) 
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Second order parabolic torsion distribution 

 2ndt =    midw cos  (A.8) 

Brace torque from first order uniform torsion 

 1st 1stT = -C t L3   (A.9) 
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multi-span   C =
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Brace torque from second order parabolic torsion 

 2nd 2ndT = -C t L4  (A.12) 

where 

simple span C =
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 multi-span  C =
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Net Brace Torque 

1st 2ndT = T + T  

Brace equilibrium effects 

Shear force in Torsion Brace 

 
 1st2 T + T ξ

V = -
spa

2nd   (A.15) 

Downslope purlin ξ = 1 
Upslope purlin ξ = -1 
 

Axial Force in brace (sign convention for force as applied to purlin)  

   xy
P = -V

Ib
x

I
   (A.16) 
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Moment about x-axis 

The moment about the x-axis from the uniformly distributed loads at any location, z, along the 
span is 

 

  M = x,dist 5w cos C    (A.17) 

Simple span   C =
                

2
5

L z z
1

2 L L
 (A.18) 

Multi-span     
2

5
L

C =
12

         
    

z z
6 1 1

L L
 (A.19) 

The moment about the x-axis resulting from the shear force in the brace is 

 M = Cx,V 6V    (A.20) 

When z ≤ c 

Simple Span  C =6 z  (A.21) 

Multi-span    
      

  
6

z c c
C L 1

L L L
 (A.22) 

When z ≥ c 

Simple Span  C =6 c  (A.23) 

Multi-span    
2

6
c

C
L

 (A.24) 

The total moment about the x-axis is the sum of the two moment effects 

M = M Mx x,dist x,V  (A.25) 

Distribution of bending stresses 

The distribution of bending stresses across the cross section is calculated by 

xyxy

yx
b

mx my my mx x

II
yx

II-y -yx
f = M + - +

I I I I I

 
 

  
   

  
 
 

x,dist x,VM  (A.26) 

Torsion stresses 

Warping torsion normal stresses, fw are calculated as presented in the AISC Torsion Analysis 
Design Guide (Seaburg and Carter, 1997) considering both pure torsion and warping torsion 
resistance. 

  w N u p bracef E W '' '' ''         (A.27) 

The generalized warping functions are given for each of the torsional load effects: uniform 
torsion, parabolic distributed torsion, and concentrated torque at the brace location 
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Uniform torsion 
Simple span 

Any location, z  1st
u

t L
'' = cosh h sinh -1

GJ a 2a a

             
      

z z
tan  (A.28) 

Mid-span      1st
u

t 1
'' = -1

GJ L
cosh

2a

 
 
 
  
  

  

 (A.29) 

Brace         1st
u

t
'' = cosh - tanh sinh -1

GJ a

             
      

c L c
2a a

 (A.30) 

Multi-span 

Any location, z  1st
u

t
'' = cosh - sinh -1

GJ a

   
                                      

L
cosh

2aL z L z
2a 2a aL

sinh
2a

 (A.31) 

Mid-span      1st
u

t L
'' = -1

GJ L
sinh

a

 
 
       
  

  

1
2a

 (A.32) 

Brace         1st
u

t
'' = cosh - sinh -1

GJ a

   
                                      

L
cosh

2aL c L c
2a 2a aL

sinh
2a

 (A.33) 

Parabolic torsion  
Simple span 

Any location, z  
2

2nd
p 2

L
cosh

t a8a
'' = sinh

GJ aLL sinh
a

                                      
   

    

21
z z z z

1 cosh 4 4
a L L

 (A.34) 

Mid-span     
2

2nd
p 2

t 8a 1
'' = 1- -1

GJ LL cosh
2a

  
  
  
   
   

    

 (A.35) 
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Brace Location
2

2nd
p 2

L
cosh

t a8a
'' = sinh

GJ aLL sinh
a

                                        
   

    

21
c c c c

cosh 1 4 4
a L L

 (A.36) 

Multi-span 

Any location, z 2 2
2nd

p 2 2

L
cosh

t 2a4a 8a
'' = cosh

GJ aLL Lsinh
2a

   
                                              

    

2L 1 z z z z
sinh 1 4 4

a 3 a L L

 (A.37) 

Mid-span  
2 2

2nd
p 2 2

t 4a 1 8a
'' = + -1

GJ LL Lsinh
2a

  
   
    
         

    

L 1
a 3

 (A.38) 

At brace location 2 2
2nd

p 2 2

L
cosh

t 2a4a 8a
'' = cosh

GJ aLL Lsinh
2a

   
                                              

    

2L 1 c c c c
sinh 1 4 4

a 3 a L L

 (A.39) 

Concentrated brace torque 
Simple span 

z < c          1st 2nd
brace

L - c
sinh + sinh

T + T a a1 c L - c
'' = sinh - cosh cosh

GJ a a a aL
tanh

a

    
                                
  

  

c
z  (A.40) 

c < z < (L-c)     1st 2nd
brace

L - c
sinh + sinh

T + T a a1 L - c c
'' = sinh - cosh - cosh sinh

GJ a a a a aL
tanh

a

     
                                         
   

    

c
z z  (A.41) 

 

At mid-span    1st 2nd
brace

L - c
sinh + sinh

T + T a a1 L L - c L c
'' = sinh - cosh - cosh sinh

GJ a 2a a 2a aL
tanh

a

     
                                         
   

    

c
 (A.42) 

  At brace location 1st 2nd
brace

L - c
sinh + sinh

T + T a a1 c L - c
'' = sinh - cosh cosh

GJ a a a aL
tanh

a

    
                                
  

  

c
c  (A.43) 

Multi-span 

z < c             1st 2nd
brace

cosh
T + T 2a1

'' = 1- cosh h cosh
GJ a a a a aL

sinh
2a

   
                                                 

L
c c z z

sin sinh
 (A.44) 
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c < z < (L-c)     1st 2nd
brace

cosh
T + T 2a1

'' = 1- cosh cosh
GJ a a a aL

sinh
2a

  
                                  

  

L
c z z

sinh
 (A.45) 

At mid-span    1st 2nd
brace

T + T 1 c
'' = 1- cosh

GJ a a L
sinh

2a

  
                       

    

1  (A.46) 

 

At brace location 1st 2nd
brace

cosh
T + T 2a1 c

'' = 1- cosh cosh
GJ a a a aL

sinh
2a

  
                                  

  

L
c c

sinh
 (A.46) 

Summation of stresses 

The net stress, f, at each location in the cross section is the sum of the bending and torsion 
warping stresses. 

b wf f f         (A.47) 

Strength evaluation 

The net stress is calculated at each point of interest along the span of the purlin. Typically, the 
critical locations to check the strength are the mid-span of the purlin and the brace locations.  

Scaling stresses 

The maximum stress, fmax, in the cross section is determined. The stress scale factor is 
determined from the ratio of the yield stress of the material to the peak stress in the cross section, 
Fy/fmax. The stress at each location of the cross section is multiplied by the stress scale factor to 
scale the stresses in the cross section to the point of first yield.  

Buckling analysis 

A finite strip buckling analysis is performed in CUFSM using the cross section stresses scaled 
to the point of first yield. In the analysis, no lateral or rotational springs are applied because the 
both the local and distortional buckling half sine wavelength is shorter than the typical spacing 
between standing seam clip attachments. From the minima in signature curve in CUFSM, 
buckling load factors are determined for local and distortional buckling. 

Strength determination  

At the location along the span being evaluated, the yield moment, My, is calculated from the 
product of the moment about the x-axis, Mx, and the stress scale factor. 

y
y x

max

F
M M

f

 
   

 
  (A.48) 

Local buckling 

The critical local buckling moment, Mcrℓ, is calculated as the product of the local buckling load 
factor from CUFSM and the yield moment. The nominal local buckling strength, Mnℓ is 
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calculated according to AISI S100 Section F3.2 with Fn = Fy.  

Distortional buckling  

The critical distortional buckling moment, Mcrd, is calculated as the product of the distortional 
buckling load factor from CUFSM and the yield moment. The nominal distortional buckling 
strength is calculated according to AISI S100 Section F4.1. 

Controlling strength 

The minimum of the local and distortional buckling moment is the nominal strength, Mn. which 
is then compared to the moment about the x-axis, Mx. If Mn > Mx, the purlin has sufficient 
capacity to support the uniform load. The calculated nominal strength in this case does not 
necessarily represent the actual strength. Because the process includes an approximation of 
second order effects, the stress distribution will change at different load levels. If the actual 
failure load is required, iteration is required by varying the applied load until Mn is 
approximately equal to Mx. Iteration may be terminated when Mn is within ten percent of Mx. 

 
Calculate the ratio of Mn/Mx at each of the critical locations along the length of the purlin. The 
location where the ratio of Mn/Mx is the largest is the location that will control the strength. 
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