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Summary 
 

The objective of this research is to create a computationally efficient seismic analysis 

framework for cold-formed steel (CFS) framed-buildings supported by hysteretic nonlinear 

models for CFS members and screw-fastened connections. Design of CFS structures subjected to 

lateral seismic forces traditionally relies on the strength of subassemblies subjected to lateral 

loading of systems, such as strapped/sheathed shear walls and diaphragms, to provide adequate 

protection against collapse. Enabling performance-based seismic design of CFS buildings 

requires computationally efficient and accurate modeling tools that predict the nonlinear cyclic 

behavior of CFS buildings, the individual CFS components and connections. Such models should 

capture the energy dissipation and damage due to buckling and cross-sectional deformations in 

thin-walled CFS components subjected to cyclic loads such as those induced by earthquakes. 

Likewise, models for screw-fastened CFS connections should capture the energy dissipation and 

damage due to tilting, bearing, or screw shear when subjected to cyclic loading.  

In this dissertation, an analysis framework for CFS structures that captures the nonlinear 

cyclic behavior of critical components including axial members, flexural members, and screw 

fastened connections is presented. A modeling approach to simulate thin-walled behavior in CFS 

members is introduced where parameters were developed using results from an experimental 

program that investigated the cyclic behavior and energy dissipation in CFS axial members and 

flexural members. Energy dissipation and cyclic behavior of CFS members were characterized 

for members experiencing global, distortional and local buckling. Cyclic behavior and energy 

dissipation in thin steel plates and members was further investigated through finite element 

analysis in ABAQUS to provide a strategy for modeling steel columns cyclic behavior including 

local buckling. Model parameters were developed as generalized functions of the hysteretic 

energy dissipated and slenderness. The capabilities of the analysis framework are demonstrated 

through simulations of CFS wood sheathed shear wall cyclic responses validated with 

experimental results from full scale shear wall tests. 

An ABAQUS user element (UEL) is provided for simulating CFS screw-fastened 

connections that was verified against experimental responses. The connection model is employed 

in CFS sheathed shear wall simulations of recent monotonic and cyclic experiments where each 

screw-fastened connection is represented by UEL. 
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Chapter 1: Introduction 
 
The objective of this research work is to develop a computationally efficient analysis 

framework for cold-formed steel (CFS) framed buildings subjected to extreme loading (e.g., 

seismic loading) supported by hysteretic nonlinear models that can capture the nonlinear cyclic 

behavior of all the critical components. The steel industry increasing interest on using cold-

formed steel for multi-story building construction able to withstand extreme loads such as 

earthquake induced lateral loads, requires development of analysis tools and guidelines that 

allow flexibility in modeling and safe design of actual CFS structures. Furthermore, the shift 

towards performance-based earthquake engineering has created considerable interest in 

understanding and controlling building seismic performance at different seismic hazard levels. 

Current analysis and prescriptive design procedures for CFS lateral load-resisting systems (e.g., 

steel/wood sheathed CFS shear walls and diaphragms), are expected to provide adequate 

protection against collapse [1], but lack the ability to predict and design for performance levels. 

These prescriptive procedures provide no information about energy dissipation, strength 

degradation, and stiffness degradation of these systems and their components (e.g., floor joists, 

drag struts and boundary chord studs). They also neglect the resistance from other CFS 

components that are not part of the lateral-load resisting system (e.g., gravity load supporting 

walls).  

To develop seismic performance factors (i.e., R, Ω0, and Cd) and include different hazard 

levels in addition to collapse, it is necessary to consider ground motions suites, many ground 

motion intensities, as well as, different structural layouts [2]. This in turn translates into a sizable 

number of analyses (i.e., thousands of nonlinear response history analyses) that require 

computationally efficient and reasonably accurate modeling tools. These tools should allow 

flexibility on modeling different structural layouts and capture the energy dissipation and the 

major response characteristics in CFS systems (e.g., shear walls, diaphragms), their components 

(i.e., studs and joists) and connections subjected to cyclic loading. Developing such models 

requires characterizing the cyclic behavior and energy dissipation in CFS systems, members and 

connections through experiments and analysis.  

Research efforts to understand seismic behavior of cold-formed steel structures 

traditionally focus on studies of shear wall response. These include experimental and analytical 
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studies of the most common CFS shear wall configurations used in construction including wood, 

steel or gypsum sheathed and steel strapped shear walls (e.g., [3-14]). More recent efforts 

grouped under the CFS-NEES projects, seek to advance understanding in the seismic behavior of 

cold-formed steel buildings and the building blocks (e.g., members, connections, shear walls, 

floor diaphragm) for developing nonlinear models and response history analysis [15]. These 

projects include shear wall tests [6,7,12,13], characterization of sheathing to steel connections 

[16,17], characterization of moment-rotation responses including the post-buckling part of the 

response in CFS flexural members exhibiting local and distortional buckling [18], and the 

recently completed shake table tests of the full scale CFS-NEES building that was subjected to 

various ground motions at different stages of construction to evaluate the different structural 

element contributions to the seismic response [19,20]. Detailed background information pertinent 

to the research presented in this dissertation is summarized in the corresponding chapters. 

Within this framework towards a better understanding of CFS building seismic behavior, 

there is still a need to expand the knowledge of the behavior at the more basic levels, i.e., 

member cyclic behavior including buckling deformations, screw-fastened connections behavior, 

and how they contribute to systems (e.g., shear walls, diaphragms) energy dissipation, and 

overall building response. Understanding at the member and connection level facilitates 

consideration of different structural layouts, lateral-force resisting systems, and hazard levels in 

analysis and design. For example, the cold-formed steel structure in Fig. 1.1 comprises numerous 

CFS members forming shear walls, floor diaphragms and gravity load carrying walls that during 

an earthquake are subjected to cyclic axial and flexural loads. The seismic behavior and 

performance of this building can be assessed using computationally efficient models that account 

for the behavior of the individual components (i.e., joist, studs, and connections). In Fig. 1.1 for 

instance, joists, studs and connections can be modeled using nonlinear hysteretic models that are 

assembled to simulate the cyclic behavior of the whole building. This dissertation introduces a 

computationally efficient component based analysis framework for cold-formed steel framed 

buildings supported by nonlinear hysteretic models for CFS members and screw-fastened 

connections. The proposed analysis framework contributes to advancing performance-based 

seismic analysis and design of cold-formed steel framed buildings. 



 

3 

 
Fig. 1.1. Cold-formed steel framing members experience cyclic axial and flexure forces during earthquake 

excitations (adapted from CFS-NEES building model [19]) with behavior that can be represented by 
phenomenological models [21]. 

 
Thin-walled cold-formed steel members subjected to compressive stresses are prone to 

inelastic buckling deformations that reduce stiffness and affect their post-peak strength behavior. 

When subjected to cyclic loading, buckling deformations reverse and combine with yielding 

strains in tension at the highly stressed locations. Energy dissipates through accumulation of 

these inelastic strains that can lead to fracture and tearing of the material (see Fig. 1.2).  

The types of buckling deformations experienced by thin-walled members are different 

depending on the geometry and elastic buckling properties. For common cold-formed steel 

members the AISI Direct Strength Method (DSM) [22] identifies three types of buckling limit 

states: global (Fig. 1.2a and 1.2d), distortional (Fig. 1.2b and 1.2e), and local buckling (Fig. 1.2c 

and 1.2f). Depending on which of these limit states governs, the distribution (or concentration) of 

inelastic strains as well as cyclic strength and stiffness deterioration may vary. For example Fig. 

1.2a shows inelastic strains due to buckling of the stiffening lips in a CFS stud experiencing 

global buckling while Fig. 1.2f shows inelastic strains concentration from local buckling in the 

web of a CFS joist subjected to uniform bending. Characterizing the relationship between the 

different types of buckling deformations and the cyclic behavior is one of the objectives of this 
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research towards providing the analytical tools for the seismic analysis framework for CFS 

structures. 

 
Fig. 1.2. Cold-formed steel member failure modes: (a) global buckling in axial member; (b) distortional 

buckling in axial member; (c) local buckling in axial member; (d) global buckling in flexural member; (e) 
distortional buckling in flexural members; (f) local buckling. 

 
 



 

5 

Two approaches are introduced in this dissertation to model the cyclic response of cold-

formed steel axial and flexural members experiencing local, distortional and global buckling 

deformations: a nonlinear spring model with concentrated nonlinear axial load-displacement (P-

δ) or moment-rotation (M-θ) behavior, and a nonlinear beam-column with distributed nonlinear 

section axial load-strain (P-ε) or moment-curvature M-κ behavior. Model parameters are derived 

as functions of the hysteretic energy dissipated, unbraced length, and member elastic buckling 

properties. These models are then used together with a nonlinear spring model for screw-fastened 

connections to illustrate the capabilities of simulation framework.  

Single screw-fastened CFS connections subjected to cyclic shear deformations fail due to 

fastener tilting; bearing; tearing; screw shearing, screw pull out, screw shear+tension fracture; or 

a combination of two or more of this limits (see Fig. 1.3). Energy dissipation occurs as the hole 

elongates due to bearing stresses and/or tearing of the connected pieces material around the hole. 

A nonlinear spring model is used to simulate the behavior of the CFS single screw-fastened 

connections. 

 
Fig. 1.3. Failure modes in single fastened cold-formed steel connection: (a,b) tilting + bearing hear; (c) 

bearing + tearing; (d) screw shear. 
 

The research progression starts with Chapter 2 studying the energy dissipation in thin 

plates subjected to axial and flexural cyclic loading. The study provides insight on the cyclic 

behavior of thin-walled cross-section elements, such as webs and stiffened elements. The effects 

of slenderness, imperfections, and loaded end boundary conditions on the cyclic response and 

energy dissipation are explored through nonlinear finite element modeling in ABAQUS [23]. 
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Chapter 3 describes a framework to model cyclic behavior in thin-walled cold-formed steel axial 

and flexural members. The approach for CFS members described in Chapter 3 is specialized in 

Chapter 4 to model the axial cyclic behavior in steel columns including local buckling. The 

library asymPinching is implemented for OpenSees [24] or MATLAB [25] that allows for the 

approximate simulation of local buckling in cyclic frame-type analyses. In Chapter 5, An 

ABAQUS user element (UEL) is provided for simulating CFS screw-fastened connections and 

illustrated in simulating CFS sheathed shear wall simulations. This research concludes in 

Chapter 6 demonstrating the potential of the nonlinear asymPinching model for CFS members in 

the analysis of CFS shear walls that are validated against experimental responses of wood-

sheathed shear walls used in the CFS-NEES building [19,20] tested at the University of North 

Texas [12,13]. Summaries of literature pertinent to the research presented in this dissertation are 

summarized in the corresponding chapters as needed. 

Additional information that supplements the work in this research is supplied in the 

appendices. Appendix A describes the background and reasoning for developing the 

displacement-controlled loading protocol used in the cyclic response simulations. The MATLAB 

version code for the asymPinching is provided in Appendix B. The results of user element (UEL) 

verification examples for screw-fastened simulations in ABAQUS are summarized in Appendix 

B. And the code implementing the user element in FORTRAN is provided in Appendix D. 
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Chapter 2: Cyclic Behavior and Energy Dissipation in  
Cold-Formed Steel Thin-Walled Members 

 
In this chapter, cyclic behavior and energy dissipation in thin steel plates are studied 

through nonlinear finite element modeling to explore answers to the research questions: 1) What 

are the energy dissipation mechanisms in cold-formed steel members? and 2) How do damage 

and inelastic strains accumulate during cyclic loading?. The results from this study provide 

insights into the cyclic behavior of thin-walled cross-section elements (e.g., webs and stiffened 

elements) subjected to stresses from axial and flexural loading.  

Thin-walled cold-formed steel members subjected to compressive stresses experience 

buckling deformations that will reduce their stiffness and affect the post-peak behavior. As the 

applied compressive stresses increase, these buckling deformations appear and their effects 

translate to the axial load-deformation curve by changes in stiffness and peak-strength values. 

For example, Fig. 2.2 compares the response of two axially loaded studs with fixed ends 

subjected on the top to a displacement δ. This figure shows that the more slender member (λℓ 

=2.04) shows larger buckling deformations that translate into smaller pre-peak stiffness (segment 

a-b vs. segment d-e) and peak strength compared to the less slender stud, λℓ =1.14, [λℓ 

=(Py/Pcrℓ)0.5, Py=AFy, Fy=yield stress, A=cross-section area, Pcrℓ=local buckling load]. Depending 

on the elastic buckling properties and yield stress, these buckling deformations will be reversible 

(i.e., elastic) or will include permanent plastic strains. As the member reaches its maximum 

strength, inelastic deformations spread across the mid-height cross-section so that the response 

beyond this point softens with a gradually decreasing negative stiffness and inelasticity spreading 

along the member (see b, e, c, and f in Fig. 2.2). Whether the post peak strength decreases more 

or less gradually depends on the properties (slenderness) of the member as illustrated in Fig. 2.2. 

The drop in strength from peak strength (20% drop) is steeper for the less slender member (point 

b to c) compared to the more slender member (point e to f).  

Similar behavior can be observed in thin-walled members subjected to cyclic loading. 

Buckling deformations appear as compressive stresses are applied and inelastic strains 

accumulate around the buckled cross-section. When the loading direction reverses, more 

inelastic strains accumulate at the buckled cross-sections which translate into strength and 

stiffness reduction in the subsequent cycles as shown in Fig. 2.3. The amount of inelastic strains 
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that accumulate, or more precisely the damage accumulated along the member length, translates 

into hysteretic energy dissipated.  

The hysteretic energy dissipated can be equated to the work done by the applied 

loads/moments using the concept of energy balance in a structural member [27]. The energy 

input by external loading in a member (see, Fig. 2.1) can be equated to the sum of the kinetic 

energy Ekinetic, energy dissipated by additional damping or friction Edamping, and the energy 

dissipated by deformation of the components Edeform, as shown in Eq. 2.1. If additional damping 

is not provided and friction is neglected the corresponding term Edamping can be dropped from Eq. 

2.1. Since in the research discussed herein members are loaded in a quasi-static manner, the 

kinetic energy term Ekinetic is also neglected. The remaining energy term Edeform can be separated 

in two components, the recoverable elastic strain energy Estrain and the hysteretic energy 

dissipated Ehysteretic. The input energy is equal to the work done by the external loads/moments 

applied to the structure (Wext), which is calculated as the area enclosed by the load-deformation 

response, see Fig. 2.1. The hysteretic energy dissipated is approximated by equating it to the 

input energy, and thus it becomes the area enclosed by the load-deformation response. This 

approach is adopted throughout this dissertation to calculate the energy dissipated within a CFS 

member during cyclic loading. 

deformdampingkineticinput EEEE ++=  2.1 
 

 
Fig. 2.1. Energy dissipated within the member is equated to the work done by external loads. 
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Fig. 2.2. Monotonic axial load-deformation (P-δ) response where the more slender member experiences 
larger buckling deformations which translate in smaller pre-peak stiffness (segment a-b vs. segment d-e) 

and peak strength. 
 

 
Fig. 2.3. Cyclic load deformation response. Inelasticity accumulates around the mid-span  

due to buckling deformations and yielding in tension. 
 

The amount of energy dissipation can vary depending on the elastic buckling properties 

of the thin-walled members but also on the boundary conditions at the end of the members. The 

following two sections describe an analytical study of the cyclic behavior of thin steel plates 

subjected to stresses from axial and flexural loading. The study explores initial answers to the 

questions formulated at the beginning of this chapter and provided insight into how energy 
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dissipates and how damage accumulates in CFS cross-section elements (e.g., webs and stiffened 

elements) during cyclic loading. 

2.1 Cyclic behavior and energy dissipation in thin steel plates 

Cyclic behavior and energy dissipation in thin steel plates subjected to in-plane axial and 

flexural loading was studied through finite element analyses in ABAQUS [23]. The models are 

implemented using S9R5 thin shell elements for two sets of plates summarized in Table 2.1. The 

S9R5 shell element is a nine node, doubly-curved, reduced integration, quadratic element with 

five degrees of freedom per node, flexible shear strain definition, and numerically imposed 

Kirchhoff constraints (classical plate theory with no transverse shear deformation) [23]. Two 

widths (h) to thickness (t) ratios were selected with values matching the flat web width and 

thickness of common CFS channels. Plate lengths were selected as multiples of the buckled half-

wavelength Lcr. 

Two boundary condition cases for the loaded edges are considered to simulate pinned and 

fixed end conditions as shown in Fig. 2.4. In the pinned end condition, the translational degrees 

of freedom at the loaded edges are constrained to move as a rigid body while rotations at each 

node are unconstrained. For the fixed end condition, all degrees of freedom at the loaded edges 

are constrained to move as a rigid body. The out of plane displacement (2 direction) around all 

edges is restrained while free to move in the 1 and 3 directions, and free to rotate about direction 

3. Initial geometric imperfections are imposed based on the lowest elastic buckling mode (see 

Fig. 2.6a and 2.6c) with magnitudes d0/t=0.17 and d0/t=0.54 (d0=imperfection magnitude). These 

magnitudes respectively correspond to occurrence probabilities P(d<d0)=0.25 and P(d<d0)=0.75 

that the actual imperfection, d, will be less than d0 [28,29]. The geometry and boundary 

conditions are summarized in Fig. 2.4. 

The elastic modulus of elasticity was assumed as E=203.4GPa and Poisson’s ratio ν=0.3. 

Material nonlinearity was implemented using two true stress-strain (σ-ε) curves (Fig. 2.5) and 

isotropic hardening behavior. The stress-strain curves correspond to actual measured stress-strain 

curves from cold-formed steel tension coupon tests of the selected thicknesses. The plates are 

loaded from both ends by imposing a displacement or rotation history using the cyclic loading 

protocol for cold-formed steel members described in Appendix A. The protocol is symmetric 

with steps of increasing amplitude and two cycles per step. Each step’s amplitude is 40% larger 
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than the previous (i.e., δi=1.4δi-1 and θi=1.4 θi-1). The protocol is anchored at the fourth step to 

the elastic displacement δe=(0.673)2PcrL/AE for uniform axial loading where Pcr is the elastic 

plate buckling load and A=th the plate cross section area (see Table 2.1). For the in-plane 

bending case (i.e., stress gradient) the protocol is anchored at the fourth step to the elastic 

rotation θe=(0.673)2McrL/2EI where Mcr is the elastic plate buckling moment and I= ht3/12, is the 

plate cross-section moment of inertia. Energy dissipated, equated herein to external work done 

by the axial force in the direction of the applied displacement/rotation (or strain energy), will be 

compared between models for every cycle, and total length, half-wave length, plate slenderness 

effects will be discussed. 

Table 2.1. Cold-formed steel thin plate analysis matrix. 

Model(a) t h Lcr L Fy Pcr
(b) Mcr

(b) 

(mm) (mm) (mm)  (MPa) (kN) (kN-mm) 
P60-33-i##-A 0.879 147 147 1, 2, 3, ... 10 times Lcr, 

305 and 2740mm 
334 3.24 - 

P36-54-i##-A 1.367 85 85 398 20.95 - 
P120-97-i##-F 2.583 292 168 1, 2, 3, ... 10 times Lcr, 

1625 and 3048mm 
422 - 13005 

P100-33-i##-F 0.879 248 188 410 - 514 
(a) i## = imperfection magnitude (i25:d0=0.17t; i75: d0=0.54t) [28], A = Axial, F = Flexural. 
(b) Plate buckling load/moment 

 

 
Fig. 2.4. Plate model geometry and boundary conditions. 
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Fig. 2.5. True stress-strain curves assumed for plate models (a) in compression; and (b) in bending. 

 

2.1.1 Cyclic axial behavior in thin plates 

The axial cyclic responses obtained show elastic behavior for all cycles before reaching 

the peak compression load. At the peak compression load, energy dissipation starts as plastic 

strains concentrate at one or more locations leading to full cross-section and plate collapse (i.e., 

no load carrying capacity either in compression or tension). Damage accumulated in these zones 

that are approximately one half-wave (Lcr) long for all the plates analyzed irrespective of the 

plate length and generally happened at the mid-length (see, Fig. 2.6b). Only in four plates, 

corresponding to the longer plates with ratio h/t=62.12, fixed ends (case 2 in Fig. 2.4), and 

symmetric imposed imperfection patterns, the damaged zones happened closer to the loaded ends 

as shown in Fig. 2.6d. Energy dissipation occurs through plastic deformation at the damaged 

zones. 

 
Fig. 2.6. Initial imperfection shape and damaged zone relationship in plates subjected to cyclic axial load. 
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Cumulative energy dissipation is compared in Fig. 2.7 for all lengths and for the two 

imperfection magnitudes considered. The energy dissipated was normalized to Pyδcr (Py=AFy, 

δcr=PyLcr/AE, A=th) and plotted as a function of the cumulative post-peak applied displacement 

divided by the half-wave length  Σ(δ/Lcr). It can be seen that all the curves are grouped and 

therefore energy dissipation is independent of the plate length and is confined to a damaged zone 

that extends approximately one half-wave length Lcr. In the four long plates (L=849mm and 

2743mm) that exhibited two damaged zones close to the loaded edges as shown in Fig. 2.6d, the 

amount of energy dissipation was about twice as much the plates that exhibited only one 

damaged zone (see Fig. 2.7b). Thus, the amount of energy dissipated is proportional to the 

number of damaged zones developed in the plate (i.e., zones with concentration of plastic 

strains). The presence of two damaged zones is related to the initial geometric imperfection field 

imposed to the plates. The imperfection field imposed to the long plates (i.e., lowest buckling 

mode) presents maximum amplitudes towards the loaded edges encouraging larger strains at that 

locations. The magnitude of the imperfection (i.e., d0/t=0.17 and d0/t=0.54) has no effect on the 

amount of energy dissipated or location of the damage zone. The effect from the different 

boundary conditions is almost negligible for both plate groups because damaged accumulated at 

least one half-wave length away from the loaded edges. 
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Fig. 2.7. Cumulative hysteretic energy (HE) dissipated in cyclic axially loaded thin plates of various 

lengths: (a) width h=85mm pinned ends; (b) width h=85mm tied ends; (c) width h=147mm pinned ends; 
(d) width h=147mm tied ends (see Table 2.1). 

 

2.1.2 Cyclic flexural behavior in thin plates 

The flexural responses obtained were mostly elastic in all cycles before reaching the peak 

moment. After peak moment, buckling inelastic deformations appear due to compressive stresses 

and energy dissipates as plastic strains extend at more than one location along the plates. 

Inelastic strains appear first on the side of the plate that is in compression right after peak 

moment and when the load direction reverses, inelastic strains may appear right at the opposite 

side (Fig. 2.8b) or at some other location due to redistribution of stresses (Fig. 2.8e). Damage 

accumulates in these zones that can extend a length less or equal to the buckled half-wavelength 

(Lcr) irrespective of the plate length. All plates in series P100 showed two damaged zones (Fig. 
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2.8c) while plates in series P120 showed one (Fig. 2.8b), two (Fig. 2.8c) and three damage zones 

(Fig. 2.8e) as the length of the plate increased as shown in Fig. 2.9. Energy dissipation occurs 

through plastic deformation at the damaged zones. 

 
Fig. 2.8. Initial imperfection shape and damaged zone relationship in plates subjected to cyclic flexure. 

 

Cumulative energy dissipation is compared in Fig. 2.9 for all lengths and for the two 

imperfection magnitudes considered. The energy dissipated was normalized to Myθycr (My=SFy, 

θycr=MyLcr/2EI, I=th3/12, S=2I/h) and plotted as a function of the cumulative post-peak applied 

rotation divided by the rotation θycr  Σ(θ/θycr). The rotation θycr at the end of a plate of length Lcr 

due to a moment My. In Fig. 2.9a is shown that all the curves in series P100 are grouped together 

and that the number of damaged zones (two) is the same for all the plates. Thus, energy 

dissipation is independent of the plate length and is confined to the two damaged zones that 

extend each approximately a half-wave length Lcr. As the number of damaged zones increases 

due to stress redistribution, more sections of the plate accumulate inelastic strains and thus the 

amount of energy dissipated increases. The cumulative energy dissipated is proportional to the 

number of damaged zones where plates exhibiting two damaged zones dissipated about twice the 

energy of those in which only one damaged zone occurred.  

There is not an observed relationship as to what triggers the formation of more than one 

damaged zone on the analyzed plates. The plates are subjected to uniform bending right before 

peak moment, and theoretically maximum compressive stresses are the same along the farthest 

fiber. Thus, the likelihood that a damaged zone appears is the same for any cross-section along 

the plate and it only increases if the magnitude of the imperfection at such cross-section is bigger 
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than in adjacent cross-sections. Once inelasticity starts accumulating at one of the damaged 

zones other damaged zones are less likely to appear on the same side (see Fig. 2.8e) unless 

plastic strains have spread across the cross-section full depth. The magnitude of the imperfection 

(i.e., d0/t=0.17 and d0/t=0.54) had no effect on the amount of energy dissipated or location of the 

damage zone. 

 
Fig. 2.9. Cumulative hysteretic energy (HE) dissipated in thin plates of various lengths subjected to cyclic 

bending load: (a) width h=248mm tied ends; (b) width h=292mm tied ends (see Table 2.1). 
 

2.2 Remarks on the cyclic behavior of thin steel plates and cold-formed steel members 

The previous sections showed that energy dissipation is independent of the plate length 

and that it occurs through accumulation of plastic deformations at localized damaged zones. Also 

they showed that damaged zones are confined to areas of approximately one half-wave long and 

that multiple damaged zones may occur either because of the initial imperfection’s shape or 

stress redistribution (e.g., case of flexural stresses). These results provide insights into the cyclic 

behavior and energy dissipation in thin-walled cross-section elements, such as webs and 

stiffened elements. For example, the behavior illustrated in Fig. 2.8e is similar to the behavior 

exhibited by the top flange of the cold-formed steel member experiencing lateral-torsional 

buckling in Fig. 1.2d. Likewise, the web buckling deformations in Fig. 1.2d can be compared to 

the behavior shown in Fig. 2.8b. The next chapter introduces a framework for modeling cyclic 

behavior and energy dissipation including thin-walled behavior in CFS framing members.  
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Chapter 3: Nonlinear Beam-Column Models  
for Cold-Formed Steel Members 

 
This chapter presents the development of a modeling approach for cold-formed steel axial 

and flexural members under cyclic loading including local, distortional and global buckling. Two 

approaches to model the response are introduced, a nonlinear spring model with concentrated 

nonlinear P-δ (Fig. 3.1b) or M-θ (Fig. 3.4b) behavior, and a nonlinear beam-column with 

distributed nonlinearity using load-strain P-ε (Fig. 3.1c) or moment-curvature M-κ (Fig. 3.4c) to 

model cross-section behavior. The underlying hysteretic model for members behavior consist of, 

a backbone curve, unloading-reloading paths that account for pinching, and a damage model for 

strength and stiffness degradation. This formulation is based on the hysteretic model Pinching4 

[21] as implemented in OpenSees [24].  

3.1 Axial hysteretic modeling of CFS members  

In this section, the results from calibration of axial responses from tested CFS members 

described in [54] are used to formulate the nonlinear spring and beam-column models depicted in 

Fig. 3.1. The two models are formulated to simulate the cyclic response of CFS axial members 

spanning between two nodes as in the case of frame elements in common analysis tools. 

Parameters for the underlying hysteretic model for local, distortional and global buckling axial 

members are summarized in Table 3.1 and 3.2, [54]. 

3.1.1 Spring model - concentrated nonlinearity 

The spring modeling approach uses axially rigid beam elements connected to a P-δ 

nonlinear spring where all the nonlinear behavior concentrates. The spring is located at one end 

of the modeled member. Fig. 3.1b illustrates this concept where the CFS axial member subjected 

to uniform axial force in Fig. 3.1a is modeled using a nonlinear spring at the top end. Parameters 

defining the nonlinear spring behavior are obtained by direct calibration of Pinching4 to match 

experimental load-deformation responses and energy dissipation as described in [54]. Using 

nonlinear springs is a computationally inexpensive approach but requires adjusting the calibrated 

model parameters depending on possible different member lengths and loading conditions. For 

example, a member subjected to non-uniform axial load can be modeled using multiple springs 
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along the length where the backbone displacement coordinates are scaled accordingly to the 

distance between springs. 

3.1.2 Nonlinear beam-column model – distributed nonlinearity 

In this modeling approach, a nonlinear beam-column element with distributed 

nonlinearity is formulated using a load-deflection P-ε formulation to model the cross-section 

behavior (Fig. 3.1c). This approach allows modeling of damage spreading due to buckling 

deformations along the member length as observed in [77], and lets modeling different axial 

loading conditions using the same set of parameters that define the cross-section behavior. The 

parameters to define the load-strain behavior of the cross-section can be derived from the values 

obtained for the nonlinear spring model. The applied displacement δi from Table 3.1 is converted 

to axial strain εi by dividing by the member length, thus εi = δi /L. This defines the axial load-

strain backbone P-ε at any cross section of the CFS axial member assuming a uniform strain 

distribution along the member. Thus, as described, this approach assumes that damaged and 

inelastic strains are averaged along the member length. This assumption does not directly reflect 

the results observed in Chapter 2 and [77] where inelastic strains concentrate in localized 

damaged zones; however, energy dissipation and the load-deflection response P-δ are still 

captured as illustrated in the next subsection. Parameters to model strength and stiffness 

degradation are defined in Table 3.2 and do not differ from those of the nonlinear spring model. 

 
Fig. 3.1. a) Axial member; b) spring model; c) nonlinear beam-column model; d) hysteretic model. 
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3.1.3 Simulating CFS members axial cyclic response 

This section illustrates the application of the hysteretic model to simulate the axial 

response of CFS members. The two models, nonlinear springs and the nonlinear beam-column 

element with distributed nonlinearity illustrated in Fig. 3.1 are used to simulate the experimental 

response of the axial members described in [77]. The nonlinear spring model is implemented in 

OpenSees using an axially rigid beam element connected to a zeroLength element located at the 

loading point (see Fig. 3.2b). For these models, one spring will suffice and values from Table 3.1 

and 3.2 are used directly without further adjustment that would be required for example if 

additional springs were to be placed along the member length L. The nonlinear beam-column 

model is implemented in OpenSees using a dispBeamColumn element connected between the 

two end nodes (see Fig. 3.2b). The Gauss-Lobatto quadrature rule with seventh integration 

points, two at the element ends, is used for numerical integration within the element. Axial load-

strain section behavior is implemented using values in Table 3.1 and 3.2. 

Comparison between the two models shows that they both produce similar results as far 

as modeling the load-deformation cyclic response P-δ of the tests in [77] as illustrated in Fig. 

3.2a. Moreover the root mean-squared deviation between the predicted load responses to the tests 

is between 8% and 14% as shown in Fig. 3.3a. Likewise, both methods show very similar energy 

dissipation cycle by cycle (Fig. 3.2c) and the total energy dissipated is almost identical yet 

smaller than the tests (Fig. 3.3b). One main disadvantage of using spring models attached to 

axially rigid beam elements arises when modeling elements in which non-uniform axial loads 

may arise, like the case of a shear wall chord-stud where the fasteners may subject the member to 

a non-uniform axial loads. In such cases proper scaling, as previously described, of the backbone 

displacement coordinates is required to avoid any displacement incompatibilities. Adjusting the 

backbone to accommodate other than uniform axial loads using hysteretic springs can be 

troublesome, however this inconvenience can be avoided by using the distributed nonlinearity 

approach. Using a beam-column element with distributed nonlinearity P-ε does not require 

adjusting the backbone curve displacements to accommodate non-uniform axial loads or other 

combined loading cases (axial +moment). 
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Fig. 3.2. a) Simulated and experimental response; b) Spring and beam-column models;  

c) Energy dissipated. 
 

 
Fig. 3.3. Model to tests load a) and energy b) dissipation ratio for all test in [77]  

(see member labels in Table 3.1). 
 

Table 3.1. Backbone definition points for axial specimens. 
Specimen Py ke 

(a) δy 
(b) δ1/δy δ2/δy δ3/δy δ4/δy P1/Py P2/Py P3/Py P4/Py k1/ke k2/ke k3/ke k4/ke 

(kN) (kN/mm) (mm)                 ×10-3 
1 600S137-97-GAM-1 245 56.13 4.36 0.463 0.562 1.394 5.600 0.433 0.482 0.210 0.096 935 490 -326 -27 
2 600S137-97-GAM-2 249 56.23 4.42 0.452 0.664 1.815 5.600 0.373 0.414 0.205 0.107 826 195 -182 -26 
3 362S137-68-GAM-1 123 28.04 4.40 0.440 0.618 1.642 5.600 0.414 0.460 0.233 0.124 942 258 -222 -28 
4 362S137-68-GAM-2 122 28.08 4.35 0.419 0.535 1.528 5.600 0.391 0.435 0.181 0.083 933 374 -256 -24 
5 600S137-68-DAM-1 177 138.86 1.28 0.837 1.427 3.779 6.000 0.493 0.548 0.377 0.286 589 93 -72 -41 
6 600S137-68-DAM-2 177 138.36 1.28 0.758 1.278 3.438 6.000 0.495 0.549 0.379 0.284 652 106 -79 -37 
7 362S137-68-DAM-1 124 106.13 1.17 1.144 1.523 3.045 6.000 0.735 0.816 0.556 0.417 642 215 -171 -47 
8 362S137-68-DAM-2 123 105.68 1.17 0.935 1.293 3.100 6.000 0.724 0.804 0.549 0.411 774 225 -141 -48 
9 600S162-33-LAM-1 72 143.49 0.50 0.526 0.816 2.913 6.000 0.385 0.427 0.259 0.188 731 147 -80 -23 

10 600S162-33-LAM-2 72 143.56 0.50 0.608 1.110 2.234 6.000 0.416 0.462 0.298 0.203 684 92 -146 -25 
11 362S162-54-LAM-1 113 181.80 0.62 1.017 1.309 2.877 6.000 0.699 0.777 0.478 0.333 688 266 -190 -47 
12 362S162-54-LAM-2 113 181.92 0.62 1.108 1.434 2.791 6.000 0.681 0.756 0.489 0.331 614 232 -197 -49 

Tension 
14 362S162-54-LAMT-1 113 181.46 0.62 0.976 1.669 7.232 - 0.823 0.953 0.967 - 847 213 3 - 
15 362S162-54-LAMT-2 114 182.79 0.62 1.126 2.880 16.168 25.633 0.870 0.957 0.997 0.450 779 102 3 -58 
16 Tension Adjusted 114 182.79 0.62 1.128 1.488 6.000 8.000 1.044 1.134 1.172 0.872 926 250 9 -150 
(a) ke = AgE/L (E=203.4GPa); (b) δy = Py/ke 
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Table 3.2. Pinching4 model parameters for axial specimens. 

Specimen(a) 
Damage Parameters Pinching Parameters 

Backbone 
 Used (d) 

Strength (b) Stiffness (b)     Compression Tension 
β2 β4 β2 β4 γE EM

(c) rD- rF- uF- rD+ rF+ uF+ 
600S137-97-GAC-1 0.70 0.98 0.69 0.20 1.88 8541 0.40 0.92 0.50 0.55 0.25 -0.10 1, 16 
600S137-97-GAC-2 0.58 0.60 0.73 0.22 2.62 8761 0.40 0.92 0.50 0.75 0.25 -0.10 1, 16 
362S137-68-GAC-1 0.69 0.71 0.90 0.33 3.39 4417 0.40 0.92 0.50 0.35 0.25 -0.03 4, 16 
362S137-68-GAC-2 0.66 0.70 0.70 0.22 2.25 4450 0.48 0.92 0.50 0.50 0.25 -0.03 4, 16 
600S137-68-DAC-1 0.71 1.04 0.68 0.30 4.78 1868 0.66 0.92 0.50 0.80 0.30 -0.10 6, 16 
600S137-68-DAC-2 0.68 0.82 0.72 0.27 4.86 1863 0.66 0.92 0.50 0.80 0.26 -0.10 6, 16 
362S137-68-DAC-1 0.68 1.04 0.70 0.52 5.05 1260 0.65 0.92 0.50 0.45 0.62 -0.03 8, 16 
362S137-68-DAC-2 0.67 1.09 0.67 0.40 4.95 1270 0.60 0.92 0.50 0.53 0.62 -0.03 8, 16 
600S162-33-LAC-1 0.71 0.55 0.68 0.33 8.68 294 0.48 0.92 0.50 0.80 0.30 -0.10 10, 16 
600S162-33-LAC-2 0.78 0.73 0.73 0.33 8.47 293 0.48 0.92 0.50 0.80 0.30 -0.10 10, 16 
362S162-54-LAC-1 0.55 0.49 0.66 0.43 6.63 579 0.48 0.92 0.50 0.53 0.62 -0.03 11, 16 
362S162-54-LAC-2 0.56 0.46 0.62 0.32 6.49 581 0.49 0.92 0.50 0.53 0.62 -0.03 11, 16 
(a) SSMA profiles [46]; AC= axial cyclic test; G, D and L are = Global, Distortional, and Local buckling [22]. 
(b) Fit using positive and negative excursions; (c) Energy in units of kN-mm; (d)  Backbone curve from Table 3.1  

 
Table 3.3. Statistics for Pinching4 parameters. 

  
Damage Parameters Pinching Parameters 

Strength Stiffness     Compression Tension 
β2 β4 β2 β4 γE EM rD- rF- uF- rD+ rF+ uF+ 

µ 0.66 0.77 0.71 0.32 5.00 2848 0.52 0.92 0.50 0.62 0.39 -0.07 
cov 0.10 0.29 0.09 0.29 0.45 1.07 0.20 0.00 0.00 0.26 0.45 -0.56 
µ = mean value; cov = coefficient of variation. 
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3.2 Flexural hysteretic modeling of CFS members [1] 

In this section, the results from calibration of flexural response from tested CFS members 

described in [54] are used to formulate the nonlinear spring and beam-column models depicted in 

Fig. 3.4. The two models are formulated to simulate the cyclic response of CFS flexural 

members spanning between two nodes as in the case of frame elements in common analysis 

tools. Parameters for the underlying hysteretic model for local, distortional and global buckling 

axial members are summarized in Table 3.4 to 3.5, [54]. 

3.2.1 Spring model - concentrated nonlinearity 

The spring modeling approach uses rigid beam elements connected to M-θ nonlinear 

springs where all the nonlinear behavior concentrates. Springs are located at preselected 

locations along the modeled member length and their number and distribution would depend on 

the loading conditions. Fig. 3.4b illustrates this concept where the CFS member under constant 

moment in Fig. 3.4a is modeled using a nonlinear spring at the mid-span. Parameters defining 

the nonlinear spring behavior are obtained by direct calibration of Pinching4 to match 

experimental moment rotation responses and energy dissipation as described in [54]. Using 

nonlinear springs is a computationally inexpensive approach but requires adjusting the hysteretic 

model parameters depending on possible different loading conditions. 

3.2.2 Nonlinear beam-column model – distributed nonlinearity 

In this modeling approach, a nonlinear beam-column element with distributed 

nonlinearity is formulated using a moment curvature M-κ formulation to model the cross-section 

behavior (Fig. 3.4c). This approach allows modeling damage spreading due to buckling 

deformations along the member length as observed in [54], and lets modeling different loading 

conditions using the same set of parameters that define the cross-section behavior. The 

parameters to define the moment-curvature behavior of the cross-section can be derived from the 

values obtained for the nonlinear spring model. Backbone rotations, θi=δi/a, from [54] are 

converted to backbone curvature values κi using Eqs. 3.1-3.2 (see Fig. 3.4c), 

                                                                                                                                                                                                    
[1] This section is part of a paper presented at the 7th European Conference on Steel and Composites Structures in 

Napoli, Italy 2014, with the title “Cyclic Flexural Hysteretic Models for Cold-Formed Steel Seismic 
Simulation”. 
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These expressions define the moment-curvature backbone M-κ at any cross section of the CFS 

flexural member. Parameters to model strength and stiffness degradation are defined in Table 3.5 

and do not differ from those of the nonlinear spring model. 

 
Fig. 3.4. a) Flexural member; b) spring model; c) nonlinear beam-column model; d) hysteretic model. 

 
3.2.3 Simulating CFS members flexural cyclic response 

This section illustrates the application of the hysteretic model to simulate the flexural 

response of CFS members. The two models, nonlinear springs and the nonlinear beam-column 

element with distributed nonlinearity illustrated in Fig. 3.4 are used to simulate the experimental 

response of the flexural members described in [54]. The nonlinear spring model is implemented 

in OpenSees using rigid beam elements connected to zeroLength elements located at the loading 

points (see Fig. 3.5b). For these models, two springs will suffice and values from Table 3.4 and 

3.5 are used directly without further adjustment that would be required for example if additional 

springs were to be placed along the unbraced length Lu. The nonlinear beam-column model is 

implemented in OpenSees using dispBeamColumn elements, one for each shear span of length a, 
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and one for the unbraced length Lu (see Fig. 3.5b). The Gauss-Lobatto quadrature rule with 

seventh integration points, two at the element ends, is used for numerical integration within each 

element. Moment-curvature behavior is implemented using values in Table 3.4 and 3.5 and Eqs. 

(3.1-3.2). 

Comparison between the two models shows that both produce similar results as far as 

modeling the load-deformation cyclic response P-δ of the tests in [54] as illustrated in Fig. 3.5a. 

Moreover the root mean-squared deviation between the predicted load responses to the tests is 

between 5% and 12% as shown in Fig. 3.6a. Likewise, both methods show very similar energy 

dissipation cycle by cycle (Fig. 3.5c) and the total energy dissipated is almost identical yet 

smaller than the tests (Fig. 3.6b). Evident differences on the deflections and rotations along the 

member arise from the nature of each model as illustrated in Fig. 3.5b for rotations and vertical 

deflections. Spring models with rigid bars have the disadvantage of displacement and rotations 

incompatibility depending on the spring arrangement and would require adjustments of spring 

definition parameters when modeling different type of loading. A solution commonly used in 

analysis of frames under lateral loads consists of using elastic-beam elements combined with 

springs that model the nonlinear behavior at the plastic hinge locations; however this approach 

requires to define a priori the springs location, could lead to numerical instability problems and 

makes it difficult to express stiffness degradation as a fraction of the elastic stiffness [78]. In this 

regard, using a beam-column element with distributed nonlinearity M-κ is an efficient approach 

that does not require additional adjustment of parameters in Table 3.4 and 3.5, and lends itself to 

further generalization and use with other loading configurations such as those producing moment 

gradients. 



 

25 

 
Fig. 3.5. a) Simulated and experimental response; b) Spring and beam-column models;  

c) Energy dissipated. 
 

 
Fig. 3.6. Model to tests load a) and energy b) dissipation ratio for all test in [54]  

(see member labels in Table 3.4). 
 

Table 3.4. Backbone definition points for flexural specimens. 
Specimen (a) 

 
My ke 

(b) θy 
(c) θ1/θy θ2/θy θ3/θy θ4/θy M1/My M2/My M3/My M4/My 

(kN-mm) (MN-mm/rad) (rad×10-3)         1 1200S162-97-GFM-1 32668 1193.1 27.38 0.328 0.443 0.631 2.000 0.314 0.349 0.237 0.193 
2 1200S162-97-GFM-2 31850 1192.2 26.72 0.325 0.515 0.761 2.000 0.317 0.352 0.236 0.185 
3   800S162-97-GFM-1 17711 429.6 41.22 0.332 0.495 0.625 1.880 0.326 0.363 0.258 0.252 
4   800S162-97-GFM-2 18182 432.1 42.08 0.347 0.511 0.808 2.000 0.337 0.374 0.253 0.211 
5 1200S250-97-DFM-1 36673 2073.8 17.68 0.725 0.879 0.905 2.000 0.656 0.729 0.577 0.387 
6 1200S250-97-DFM-2 37977 2069.5 18.35 0.732 0.883 0.925 2.000 0.680 0.755 0.538 0.361 
7   800S250-68-DFM-1 14007 546.1 25.65 0.881 1.018 1.089 2.000 0.830 0.923 0.571 0.408 
8   800S250-68-DFM-2 14148 550.7 25.69 0.892 1.023 1.109 2.000 0.821 0.912 0.538 0.440 
9 1000S200-43-LFM-1 11983 525.2 22.81 0.532 0.685 0.737 2.000 0.497 0.552 0.307 0.230 

10 1000S200-43-LFM-2 12045 526.2 22.89 0.524 0.675 0.738 2.000 0.483 0.536 0.279 0.176 
11   800S200-33-LFM-1 5575 243.8 22.87 0.550 0.698 0.752 2.000 0.526 0.585 0.283 0.193 
12   800S200-33-LFM-2 5632 244.6 23.02 0.549 0.684 0.751 2.000 0.510 0.567 0.274 0.218 
(a) SSMA profiles [46]; FM= flexural monotonic test; G, D and L are = Global, Distortional, and Local buckling [22]. 
(b) ke = 6EI/(3Lu+2a), E=203.4GPa, L=4876.8mm, a = 832mm for GFM, a = 1543mm for DFM and LFM 
(c) θy = My/ke 

 
Table 3.5. Pinching4 model parameters for flexural specimens. 

Specimen(a) 
Damage Parameters Pinching Parameters 

Backbone 
 Used (d) 

Strength(b) Stiffness(b)   Positive Moment Negative Moment 
β2 β4 β2 β4 γE EM

(c) rθ– rM– uM– rθ– rM– uM– 
1200S162-97-GFC-1 0.067 0.000 1.012 0.320 11.32 374.0 0.175 0.291 -0.176 0.205 0.324 -0.208 2 
1200S162-97-GFC-2 0.250 0.347 1.113 0.382 6.51 381.3 0.226 0.334 -0.174 0.234 0.348 -0.208 2 
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  800S162-97-GFC-1 0.237 0.318 1.184 0.459 7.71 360.2 0.218 0.333 -0.177 0.223 0.333 -0.190 4 
  800S162-97-GFC-2 0.304 0.806 1.077 0.394 8.51 372.3 0.207 0.324 -0.177 0.261 0.362 -0.211 4 
1200S250-97-DFC-1 0.581 1.096 0.953 0.665 10.45 577.0 0.190 0.339 -0.203 0.196 0.382 -0.193 5 
1200S250-97-DFC-2 0.510 0.694 1.041 0.722 10.83 562.4 0.104 0.265 -0.209 0.226 0.418 -0.168 5 
  800S250-68-DFC-1 0.398 0.000 0.491 0.735 7.16 353.7 0.224 0.359 -0.145 0.225 0.358 -0.195 7 
  800S250-68-DFC-2 0.519 0.572 0.916 1.613 5.74 351.1 0.149 0.288 -0.162 0.242 0.383 -0.193 7 
1000S200-43-LFC-1 0.481 0.416 0.748 0.479 9.21 158.1 0.090 0.280 -0.188 0.213 0.411 -0.170 10 
1000S200-43-LFC-2 0.486 0.736 0.351 0.307 17.86 141.1 0.074 0.213 -0.164 0.221 0.403 -0.178 9 
  800S200-33-LFC-1 0.703 0.495 0.584 0.406 11.95 69.8 0.107 0.302 -0.140 0.226 0.449 -0.185 11 
  800S200-33-LFC-2 0.212 0.000 0.349 0.018 14.68 69.9 0.108 0.286 -0.162 0.280 0.475 -0.114 11 
(a) SSMA profiles [46]; FC= flexural cyclic test; G, D and L are = Global, Distortional, and Local buckling [22]. 
(b) Fit using positive and negative values; (c) Energy in units of kN-mm; (d) Backbone curve from Table 3.4. 

 
Table 3.6. Statistics for Pinching4 parameters. 

  
Damage Parameters Pinching Parameters 

Strength Stiffness     Compression Tension 
β2 β4 β2 β4 γE EM rD- rF- uF- rD+ rF+ uF+ 

µ 0.40 0.46 0.82 0.54 10.16 314 0.16 0.30 -0.17 0.23 0.39 -0.18 
cov 0.46 0.76 0.37 0.72 0.35 0.54 0.37 0.13 -0.12 0.10 0.12 -0.14 
µ = mean value; cov = coefficient of variation. 

 

3.3 Conclusions 

The modeling approach described allows modeling CFS member cyclic behavior in 

systems and different loading scenarios as illustrated later in Chapter 6. Some shortcomings arise 

with the modeling approach using nonlinear beam-columns with hysteretic behavior modeled at 

the cross-section level as described in this chapter. The first one is related to the axial load-

bending interaction in the case where both axial loads and bending moments are applied at 

member ends. This type of interaction is not included for the behavior at the cross-section level 

formulated here and would not be addressed in this dissertation. However, the approach remains 

relevant to model the behavior of several components that are subjected to mainly axial loads or 

bending moments in a light-framed steel building like the one shown in Fig. 1.1.  

The second shortcoming is related to the underlying cross-section behavior model 

(Pinching4). For axial members, the modeled unloading-reloading behavior from tension to 

compression does not reflect the observed behavior from the experiments where the amount 

strength or stiffness degrades in compression excursions is independent from that in tension 

excursions. Because damage accumulation in Pinching4 is defined using the same sets of 

parameters for both loading directions, damage accumulated during compression excursions is 

used to reduce the strength envelope for the subsequent excursions in tension (and vice versa). 

This results in underestimation or overestimation of the strength or stiffness degradation 

depending on the loading direction. In the next chapter these two issues are addressed by 
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modifying Pinching4 to include damage accumulation independent of the loading directions and 

redefining the unloading-reloading path from tension to compression for axial members. 
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Chapter 4: Nonlinear Beam-Column Model for Thin-Walled 
Steel Columns Including Local Buckling [2] 

 
Steel columns subjected to dynamic loading such as those resulting from earthquake, 

wind, and other hazards, can experience cyclic local buckling deformations. During cyclic 

loading, buckling deformations reverse and combine with yielding in tension at the highly 

stressed locations compromising the member’s strength and stiffness and affect their ductility. 

Local buckling deformations develop under compression and stretch during tension, and are 

more pronounced, as well as their effects, in thinner cross-sections (e.g., thin-walled cold-formed 

steel).  

The framework described in Chapter 6 for modeling the axial cyclic behavior in CFS 

members is generalized in this chapter for thin-walled steel columns including local buckling. 

The nonlinear-beam column approach previously described is combined with a hysteretic cross-

section behavior model that describes the behavior observed in the experimental responses 

described in [77]. Generalized expressions for backbones, strength degradation, stiffness 

degradation and unloading-reloading parameters are presented as a function of the member 

cross-section slenderness λℓ and the hysteretic energy dissipated. The model parameters are 

derived using P-δ responses obtained from finite element analysis of thin-walled cold-formed 

steel members conducted in ABAQUS [23]. Parameters are calibrated so that the model matched 

the simulated axial load-displacement (P-δ) monotonic and cyclic responses of each column in 

the finite element analysis set. 

4.1 Simulated axial monotonic and cyclic responses database 

Twenty two thin-walled C-shaped columns were modeled using ABAQUS [23] to study 

the monotonic and cyclic behavior of axial members exhibiting local buckling deformations. The 

cross-sections were selected from the SSMA catalog [46] such that the capacity in compression 

is governed by local buckling as predicted using the AISI-S100-07 Direct Strength Method [22]. 

The cross-sections properties and length were selected to cover a range of local cross-section 

                                                                                                                                                                                                    
[2] Parts of this chapter are part of a paper accepted and presented at the 2015 SSRC Annual Stability Conference 

with the title “OpenSees Simulation of Steel Column Axial Cyclic Response Including Local Buckling” 
[85]. 
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slenderness λℓ =(Py/Pcrℓ)0.5 from 0.69 to 3.39 (Py=AFy, A=cross-section area; Fy=yield stress and 

Pcrℓ=local buckling load calculated using for example CUFSM [48]). The analyses were setup to 

simulate similar boundary conditions and loading as those described in [77] for testing CFS axial 

members. Table 4.1 summarizes the selected cross-sections and their elastic buckling properties. 

The column models are implemented using S9R5 thin-shell elements that allow double-

curvature within one element, a feature that facilitates definition of initially curved geometries 

with smaller mesh size (as compared to using S4 or S4R elements). The length of each column 

was set such that at least five buckling half-waves could develop in compression. The half-

wavelength Lcrℓ was calculated using the finite strip eigen-buckling analysis software CUFSM 

[48]. The aspect ratio (length/width) for each element was about 4:1 with the long side aligned 

along the length of the column. End boundary conditions were modeled as fixed ends with one 

end allowed to move along the axial direction 3, see Fig. 4.1a. Loading was applied at the free 

end by imposing a displacement history derived using the displacement-controlled testing 

protocol for cold-formed steel members described in Appendix A.  

Initial geometric imperfections are simulated using the 1D spectral approach described by 

Zeinoddini et al. [28]. In this approach the imperfection field imposed is formed using a linear 

combination of five buckling mode shapes where the amplitude of each mode along the length is 

given by a one-dimensional power spectrum. The 1D spectrum accounts for the frequency 

content and variability of the distribution of each mode along the length. The mode shapes used 

to generate the imperfection field where calculated using CUFSM [48] and are illustrated in Fig. 

4.1b.  
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Fig. 4.1. Column model geometry with warping fixed-fixed ends boundary conditions (a), and buckling 
modes used with the 1D spectral approach to construct the imperfection field imposed to the model (b). 

 
 
 

Table 4.1. Column model elastic buckling properties and compressive capacity. 
Specimen L Lcrℓ Fy Py Pcrℓ λℓ Pn 

(mm) (MPa) (kN) (kN)  (kN) 
250S162-68 260 52 417 119 244 0.694 117 
250S162-54 269 54 417 96 122 0.881 87 
350S162-68 316 63 417 138 149 0.957 119 
362S162-68 328 66 417 141 141 0.989 118 
400S162-68 366 73 417 148 122 1.091 117 
600S200-97 551 110 417 287 216 1.139 218 
350S162-54 323 65 417 111 74 1.215 82 
362S137-54 335 67 417 102 64 1.245 73 
362S162-54 335 67 417 113 71 1.255 81 
362S162-54 305 67 417 113 71 1.257 81 
362S200-54 335 67 417 128 78 1.271 92 
400S137-54 373 75 417 108 56 1.372 72 
550S162-68 516 103 417 177 78 1.488 111 
600S162-68 567 113 417 186 69 1.617 110 
550S162-54 524 105 417 142 39 1.878 76 
600S162-54 574 115 417 149 35 2.039 75 
600S250-54 574 115 417 180 40 2.093 90 
800S200-68 767 153 417 244 51 2.146 117 
800S250-68 767 153 417 263 54 2.180 126 
800S200-54 775 155 417 195 26 2.705 79 
800S250-54 775 155 417 210 27 2.751 85 

1000S250-54 976 195 417 241 20 3.387 82 
λ

ℓ

 =(Py/Pcrℓ)0.5. 
 
The steel modulus of elasticity is assumed as E=203GPa and Poisson’s ratio ν=0.3. Steel 

plasticity is implemented using the Armstrong-Frederick plasticity model [79] (combined 

nonlinear isotropic-kinematic hardening with one backstress, α, in ABAQUS) as given by Eq. 

4.1-4.2. Isotropic hardening parameters Q∞ and b and kinematic hardening parameters C1 and γ1 

were calibrated using true strain-stress curves obtained from steel coupon tests. The steel 
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plasticity model parameters are kept the same for all columns in the simulation database and are 

summarized in Table 4.2. 
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Material damage is also simulated to capture the strength and stiffness reduction from 

tearing and fracture caused by cold-bending and stretching during cyclic loading. The onset of 

damage and propagation until tearing/fracture of the material is modeled in ABAQUS using the 

DAMAGE INITIATION and DAMAGE EVOLUTION commands. Damage initiation is 

implemented using the Bao-Wierzbicki fracture criteria for metal sheets [80,81] to define the 

fracture locus. This model defines the equivalent strain to fracture εf̄ for different average stress 

triaxiality values ρ =σm/σ̄ (σm= hydrostatic stress and σ̄ = von-misses stress) as given by Eq. 4.3,  
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where A= B(3/4)1/2n is the equivalent fracture strain in pure shear, B is the equivalent strain to 

fracture in uniaxial tension, and n is the hardening exponent if the true stress-strain curve is 

approximated by the power law σ̄ = Kε̄n (K is a constant). The fracture locus parameters were 

calibrated using the same stress-strain curves used to calibrate the steel plasticity model 

following the procedure described in [81]. The values obtained are listed in Table 4.2. The 

plasticity model and fracture locus were validated by comparing cyclic responses obtained from 

ABAQUS for two of the local buckling specimens in [77] (362S164-54-LAC# specimens) to the 

corresponding experimental curves.  

 
Table 4.2. Steel material properties for ABAQUS simulations 
σy C1 γ1 Q∞ b A B- 

[MPa] [MPa] - [MPa] - - - 
416.6 114.7 3.012 295.9 3.468 0.146 0.269 

 
Axial load-displacement (P-δ) monotonic and cyclic responses were obtained for each 

model in the database. The responses were characterized to obtain the amount of strength 

degradation, stiffness degradation, hysteretic energy dissipated, and pinching following the 
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procedures described in [54]. These results are used in the next section to include local buckling 

in modeling steel column cyclic behavior. 

4.2 Axial thin-walled cross-section hysteretic model - asymPinching  

This section introduces the asymmetric pinching hysteretic model (herein referred as 

asymPinching) for modeling the axial cyclic behavior in thin-walled steel columns. The model 

includes a backbone curve, a damage model with independent definitions for tension and 

compression excursions, and unloading-reloading paths with a tension-to-compression 

unloading-reloading path definition that reflects the actual behavior observed [77] (see Fig. 4.2). 

The model follows the same format of the original Pinching4 model introduced by Lowes et al. 

[21] with redefined variables to make damage accumulation independent for negative and 

positive excursions. The generalized expressions for each parameter (as a function of the cross-

section local slenderness λℓ) are described next. 

 
Fig. 4.2. Cross-section hysteretic behavior model for axial members. 

 

4.2.1 Backbone curve  

The compression backbone coordinate pairs (δi, Pi) [or (εi, Pi)] were derived as described 

in [54] from the monotonic responses. The load values Pi are set as a function of the local 

slenderness λℓ where the peak load P2 is set equal to the DSM strength expression in AISI-S100-

12 [22]. All values of Pi are limited to a maximum of Py with the case where all Pi/Py = 1.0 

corresponding to a column with a very stocky cross-section (i.e. compact cross-section). To 
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determine the displacement δ1 (strain ε1) that marks the end of the elastic range in compression 

(point 1 in Fig. 4.2), it is necessary to calculate the initial stiffness k1 expressed as a fraction (that 

depends on λℓ) of the elastic stiffness ke=AE/L as shown in Fig. 4.3. The expressions for the 

initial stiffness k1 and the compressive load P1 suggests that the cross-section is considered fully 

effective for λℓ ≤0.689, and considered slender if λℓ >1.23. The expressions for the four 

coordinate pairs (δi, Pi) [or (εi, Pi)] that define the compression backbone are summarized in 

Table 4.3 and illustrated in Fig. 4.4.  

The tension backbone coordinate pairs (δi, Pi) [or (εi, Pi)] are set as a function of the yield 

load Py and the corresponding elastic yield displacement δy (or strain εy). Because the 

asymPinching model includes independent damage accumulation for each loading direction, it 

was not necessary to overestimate the loads Pi in the backbone as described in [54]. The load P2 

was set equal to Py and some hardening is allowed to account for material hardening that may 

occur after the cross-section yields by setting the load P3 =1.039Py. The tension backbone 

coordinates are listed in Table 4.4. 

 
Table 4.3. Compression backbone general expressions for local buckling. 

Load Displacement/Strain 
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Table 4.4. Tension backbone general expressions for local buckling. 

Load Displacement/Strain 

910.01 =yPP  

000.12 =yPP  

039.13 =yPP  

739.04 =yPP  

910.011 == yy εεδδ  

270.122 == yy εεδδ  

000.833 == yy εεδδ  

00.1044 == yy εεδδ  



 

34 

 

 
Fig. 4.3. Initial member stiffness as a function of local slenderness. 

 

 
Fig. 4.4. Compression backbone general expressions for local buckling. 

 
4.2.2 Cyclic strength and stiffness degradation 

Cyclic strength and stiffness degradation is simulated as a function of the cumulative 

hysteretic energy dissipated in each excursion Ei and the total energy dissipation capacity ET 

(see section 4.2.3). As more hysteretic energy is dissipated, the ratio Ei/ET approaches unity 

where further deterioration is not expected. The functional form for strength and stiffness 

degradation is given by Eq. 4.4 where the coefficients βi are calibrated as described further below 

in this section.  
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As discussed in [54], cyclic strength and stiffness degradation differ substantially 

between compression and tension excursions. In Pinching4, deterioration of the strength 

envelope (and stiffness) is defined using the same βi values for tension and compression. Further, 

damage accumulated during compression excursions is used to reduce the strength envelope (or 

stiffness) in subsequent excursions in tension (and vice versa). If damage accumulated from the 

previous excursion is used in the current (but opposite in direction) excursion, then strength 

degradation (and stiffness degradation) will be underestimated and overestimated during the 

compression and tension excursions respectively. In the improved asymPinching model, the 

degradation parameters βi are defined independently for tension and compression to overcome 

this shortcoming. Thus, the accumulated damage during compression excursions is not used to 

reduce the strength envelope (or stiffness) in the subsequent excursions in tension (and vice 

versa). In CFS axial members, strength degradation develops independently in both loading 

directions, where loads in tension can reach the yield load Py despite having experienced 

deterioration of the compression strength from buckling deformations unless fracture has been 

initiated. This is the case for example in a member subjected to one sided compression cyclic 

loading followed by one large tension excursion, where loads close to Py should be expected. 

Strains and stresses in tension loading tend to distribute evenly across the member cross-section 

and compared to compression loading when buckling occurs. 

( ) 0.14
2 ≤= ββη Tii EE  4.4 

01max,max, ≥−= isoi ff η  4.5 

011 ≥−= iki kk η  4.6 
 
Strength degradation is characterized as the positive difference in strength between the 

monotonic backbone force (fmax,o) and the cyclic force envelope (fmax,i). Fig. 4.5 shows how 

strength degrades as a function of the cumulative hysteretic energy Ei where lighter color curves 

indicate larger slenderness values. It can be seen that strength degradation is cross-section 

slenderness and member length independent (see Fig. 4.5). Because of this independence, two 

separate expression for ηis are set with constant parameters βis to describe how strength 

deteriorates as a function of the energy dissipated. Note that there is some residual strength after 

the energy dissipation capacity is exhausted (i.e., Ei/ET =1.0). The parameters for strength 

degradation are listed in Table 4.5. 
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Fig. 4.5. Strength degradation in compression (a) and tension (b) are member length  

and cross-section slenderness independent 
 
Stiffness degradation is characterized as the ratio between the unloading stiffness in every 

excursion ki and the initial stiffness k1. Fig. 4.6 shows how unloading stiffness degrades as a 

function of the cumulative hysteretic energy Ei. From the figure it is noted how stiffness in 

compression degrades faster as the slenderness increases indicated by the lighter colors, while in 

tension degradation is independent of the member length and cross-section slenderness. In 

addition, stiffness appears to reduce to zero as the cumulative energy dissipated Ei reaches the 

maximum value ET. Therefore, expressions for the parameters βis as a function of the cross-

section slenderness were derived for the case of stiffness degradation in compression and are 

shown in Fig. 4.7. In tension an expression for ηik with constant parameters β2s and β4s is set to 

describe how stiffness degrades as a function of the energy dissipated. The parameters to define 

stiffness degradation are listed in Table 4.5. 
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Fig. 4.6. Stiffness degradation in compression (a) is a function of the cross-section slenderness λℓ, while in 

tension (b) it is member length and slenderness independent. 
 

 
Fig. 4.7. Stiffness degradation parameters as a function of the cross-section slenderness. 

 
Table 4.5. Strength and stiffness degradation parameters. 

Loading Direction Strength Degradation Stiffness Degradation 

Compression 
586.0=2sβ ,  

697.0=4sβ  

0.1=2kβ ,  

832.0384.0 −= ℓλβ2k  

Tension 
299.0=2sβ ,  

438.1=4sβ  

0.1=2kβ ,  

797.6=4kβ  

 

4.2.3 Total energy ET  
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It was shown previously that stiffness and strength degrade as a function of the 

cumulative hysteretic energy dissipated in each excursion Ei and the total energy dissipation 

capacity ET. The total energy dissipation capacity ET is the maximum value of cumulative 

hysteretic energy the element is allowed to dissipate. A general expression to calculate ET for any 

given member represents a challenge as this value cannot be tied easily to the member strength 

and properties in a mechanics based manner. However, a heuristic procedure based on the 

hysteretic energy dissipated per excursion was developed to obtain an expression for ET given 

the member cross-section slenderness λℓ. 

The procedure to obtain ET starts by calculating the hysteretic energy dissipated per 

excursion Ee,i normalized to an area defined by the maximum load in the corresponding loading 

direction and the range of deformations of the current excursion (see inset in Fig. 4.8a). If this 

normalized energy dissipated per excursion (NHEpe,i) is plotted versus the cumulative normalized 

axial deformation (∑δ/δy), the plot will look like the one shown in Fig. 4.8a. It can be seen that 

NHEpe,i increases up to a maximum value and then decreases towards zero as cumulative 

normalized deformation increases. This is a typical behavior observed in all the cyclic responses 

from the simulation database as shown in Fig. 4.9 and also observed in the experiments 

described in [77]. Note that the normalized energy dissipated per excursion NHEpe,i decreases 

with the cross-section slenderness. This is indicated in Fig. 4.9 where slenderness increases from 

the lighter to darker colors curves. 

 

 
Fig. 4.8. The total energy dissipation capacity ET is obtained as the cumulative energy dissipated 

corresponding to a cumulative normalized deformation CDF0. The cumulative deformation CDF0 is the 
value where the normalized hysteretic energy per excursion NHEpe,i vanishes. 
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Fig. 4.9. Normalized hysteretic energy dissipated per excursion NHEpe,i. 

 
The rationale for estimating ET therefore is: there should be a cumulative normalized 

deformation CDF0 for which NHEpe,i is equal to zero and beyond that point the member is unable 

to dissipate more energy (see Fig. 4.8). The value for ET is determined as the cumulative 

hysteretic energy Ei corresponding to the cumulative normalized axial deformation CDF0. 

Values for ET were estimated for all members in the simulation database and used to obtain the 

expression in Eq. 4.7 (see Fig. 4.10). Note that ET increases rapidly to infinite as slenderness λℓ 

becomes smaller. It is assumed that for the members with a fully effective cross-section (i.e., λℓ 

≤0.689), the slenderness effects on the total energy dissipation capacity are negligible and ET 

depends only on the material properties, member length and cross-section area. Thus a maximum 

limit for the total energy dissipation capacity is proposed at ET ≤113.2Pyδy for all members with 

fully effective cross-section. This limit is set somewhat arbitrarily and the proposed value 

requires experimental validation not addressed in this dissertation. 
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Fig. 4.10. Total energy dissipation capability as a function  

of the cross-section slenderness. 
 

4.2.4 Unloading-reloading paths  

The tension-to-compression reloading path was redefined such that the slopes of 

segments h-c, c-d are positives and decrease in that order (i.e., khc > kcd) to reflect the unloading 

and reloading up to the peak compressive force in the current excursion. The slope of segment d-

a was set negative to represent the subsequent softening observed in the experimental responses. 

The points in the tension-compression unloading-reloading path are defined by three parameters 

uP‒, rP‒ and rδ‒. The parameter uP‒ is the ratio (uP‒<1.0) of the load at the point at which 

reloading in compression starts (point c in Fig. 4.2) to the current excursion degraded envelope 

load P3 (if δmin < δ2+), P4 (if δmin < δ3+) or P5 (if δmin < δ4+). The parameter rP‒ is the ratio (rP‒ 

≥1.0) of the maximum compression load in the current excursion (point d) to the load P(δmin) 

corresponding to the minimum historic displacement at point a (see Fig. 4.2). The load at point d 

is restricted to the maximum load of the current degraded backbone envelope. The displacement 

at point d is defined as the displacement at point c plus a fraction rδ‒ of the displacement at the 

peak compression load of the non-degraded backbone envelope (rδ‒ ≤1.0). 

The compression-to-tension unloading-reloading path is defined using the original 

definitions from Pinching4 model. Parameter rδ+ is the ratio of the deformation at which 

reloading starts (point f in Fig. 4.2) to the maximum historic deformation δmax. Parameter rP+ is 

the ratio of the load at the point at which reloading starts (points f) to the load corresponding to 

the maximum historic displacement P(δmax). Parameter uP+ is the ratio of the load developed 
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after unloading (point e in Fig. 4.2) to the load coordinate at point 3 of the degraded backbone 

P3+. Unloading-reloading parameters were obtained as described in [54] for each of the 

responses in the simulation database and are shown in Fig. 4.11. The figure shows no trend of 

any of the six parameters with slenderness as well as a lot of scatter. A second calibration 

exercise was performed to obtain values that worked for all responses in the simulation database 

resulting in the values summarized in Table 4.9. During the calibration exercise it was necessary 

to increase 30% the value for the total energy dissipation capacity to be able to match the 

simulated responses in ABAQUS. Thus, the new design expression for the total energy 

dissipation capacity is to 1.3ET with ET as given in Eq. 4.7. Appendix B includes the source code 

implementing the tension-to-compression unloading-reloading path for the asymPinching model.  

 

 
Fig. 4.11. Unloading-reloading path parameters for (a) tension-to-compression  

and (b) compression-to-tension. 
 

 

Table 4.6. Unloading-reloading parameters for asymPinching. 
Parameter rδ+ rP+ uP+ rδ-‐ rP-‐ uP-‐ 
Mean 0.652 1.372 0.527 0.418 0.457 -0.022 
COV 0.211 0.104 0.236 0.132 0.081 1.702 

Adopted 0.950 1.440 0.364 0.806 0.596 -‐0.019 
 

4.3 Modeling hysteretic behavior including local buckling using Pinching4 

The approach presented in the preceding section introduced new definitions for the 

tension-to-compression unloading-reloading path, and introduced independence in the damage 
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definition for tension and compression excursions. Even though the asymPinching model 

overcomes the difficulties described in [54] and Chapter 3 when using Pinching4 to model the 

cyclic behavior in CFS axial members, the model still requires further validation and code 

stability checks for different loading cases and boundary conditions. Conversely the Pinching4 

model has been used in several cases for different type of loadings since first introduced that 

probe the stability of the model and code. For this reason in this section, degradation and 

pinching parameters are provided to use with Pinching4 to model cyclic behavior of steel 

columns including local buckling. 

4.3.1 Backbone curve 

The backbone curve definitions in compression are defined using the same expressions 

given in Table 4.3. However, the backbone in tension needs to be modified to overcome the 

damage underestimation and overestimation issues associated with Pinching4 when modeling 

CFS members axial cyclic behavior. The tension backbone coordinates in Table 4.7 are proposed 

herein for used with Pinching4. This backbone in tension is defined based on the tension side of 

the cyclic envelopes obtained from the simulation database. 

 
Table 4.7. Tension backbone for steel column modeling using Pinching4. 

Load Displacement/Strain 

044.11 =yPP 	  

134.12 =yPP 	  

172.13 =yPP 	  

872.04 =yPP 	  

044.111 == yy εεδδ 	  

404.122 == yy εεδδ 	  

0.833 == yy εεδδ 	  

0.1044 == yy εεδδ 	  

 
4.3.2 Cyclic strength and stiffness degradation 

Cyclic strength and stiffness degradation parameters for Pinching4 were derived in the 

same fashion as previously described for the asymPinching model. Degradation is defined as a 

function of the cumulative hysteretic energy dissipated in each excursion Ei and the total energy 

dissipation capacity, where ET is defined by Eq. 4.7. Unlike the asymPinching model, and as 

pointed out in [54], strength and stiffness degradation in Pinching4 is defined using the same set 

of parameters for both loading directions. These parameters are calibrated using the average of 

the strength and stiffness degradation in both excursions. 
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Strength and stiffness degradation as a function of the energy dissipated is compared Fig. 

4.12 to the expressions (blue dashed-lines) proposed herein to model deterioration in Pinching4 

(see Eq. 4.4-4.6). Damage parameters β2s and β4s are set constant as strength degradation is 

member length and cross-section slenderness independent in both tension and compression. 

Stiffness degradation parameters β2k and β4k on the other hand are defined as a function of the 

cross-section slenderness λℓ as shown in Fig. 4.13. The strength and stiffness degradation 

parameters are derived after taking the average of the degradation curve in compression and the 

respective curve in tension. The expressions for strength and stiffness degradation parameters β2 

and β4 are summarized in Table 4.8. 

 

 
Fig. 4.12. Strength degradation (a) is member length and cross-section slenderness independent, while 
stiffness degradation (b) is a function of the member cross-section slenderness. Damage parameters are 

defined using the average damage in tension and compression (blue dashed-lines).  
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Fig. 4.13. Stiffness degradation parameters for Pinching4 as a  

function of the cross-section slenderness. 
 

Table 4.8. Strength and stiffness degradation parameters for Pinching4. 
Strength Degradation Stiffness Degradation 
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4.3.3 Unloading-reloading paths  

The six parameters, uP+, uP-, rδ+, rδ-, rP+ and rP- that define the unloading-reloading paths 

in Pinching4 are shown in Fig. 4.14. The parameters rδ- and rδ+ are the ratio of the deformation at 

which reloading starts (points d and f in Fig. 3.1d) to the maximum/minimum historic 

deformation, δmin and δmax. Parameters rP- and rP+ are the corresponding ratios of the load at the 

point at which reloading starts (points d and f) to the load corresponding to the maximum historic 

displacement, f(dmin) and f(dmax). Parameters uP- and uP+ are the ratios of the load developed after 

unloading (point c and e in Fig. 3.1d) to the load coordinate of backbone point 3, P3- and P3+. 

Note that the definitions of these parameters apply for both loading directions, however values 

for tension-to-compression different than compression-to-tension unloading-reloading can be 

specified. The values in Fig. 4.14 show that uP+, uP-, rδ+, rδ-, rP+ and rP- are similar for all 

members in the simulation database and therefore and average value was adopted (see Table 

4.9). 
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Fig. 4.14. Pinching4 unloading-reloading path parameters for (a) tension-to-compression  

and (b) compression-to-tension. 
 

Table 4.9. Unloading-reloading parameters for Pinching4. 
Parameter rδ+ rP+ uP+ rδ- rP- uP- 

Mean 0.381 0.892 0.210 0.419 0.457 -0.022 
COV 0.207 0.026 0.052 0.130 0.081 -1.702 

 
4.4 Simulating the axial cyclic response including local buckling using asymPinching 

Modeling the cyclic response of the local buckling members in [77] using the 

asymPinching model shows the capabilities of the latter to describe properly the response. The 

load-deformation P-δ response of the four axial members tested and those in the simulation 

database were calculated using asymPinching and previously derived expressions. The response 

was also calculated using Pinching4 to evaluate the performance of the proposed model. 

Comparison of the responses in Fig. 4.15 shows that asymPinching captures the response more 

accurately than Pinching4 including the unloading-reloading from tension-to-compression as 

well as the cumulative energy dissipation. The energy dissipated at the end of the simulations 

when using the asymPinching is in average 10% to 20% higher compared to the responses from 

the database and the experimental response for members 362LAC in [77] (see Fig. 4.16a). 

Additionally, the root mean-squared deviation between the predicted load responses using 

asymPinching to the ABAQUS simulations and tests is less than 15% and the responses for the 

362LAC members (8% and 9%) falls within the trend shown in Fig. 4.16b. The model does not 

capture well the energy dissipated at the end of the test for the 600LAC members as Emodel/Etest 

was very small and the root mean-squared deviation fell away from the error trend shown in Fig. 

4.16b. The observed errors in energy and load steam mostly from the fact that the unloading-
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reloading path is defined with the same parameters for all cycles the member may experience. As 

noted in [54] these parameters vary every cycle and accounting for this variation should reduce 

the errors observed. 

 

 
Fig. 4.15. Simulated response using the asymPinching model captures better the response (a) and  

energy dissipated (b) when compared to Pinching4. 
 

 
Fig. 4.16. Energy dissipation (a) from the asymPinching model is slightly higher than in ABAQUS 
simulations. The root mean-squared deviation (b) of the predicted load using asymPinching to the 

ABAQUS simulations is between 5% to 15%.  
 
The following observation needs mentioning when using the dispBeamColumn (or 

similar) element from OpenSees in conjunction with the distributed nonlinearity approach to 

model thin-walled axial members. Since this approach assumes a uniform distribution of the 

axial strains along the member, the damage and inelastic strains localization behavior observed 

in the plate study from Chapter 2 and experiments is not captured. This can be visualized from 

the example in Fig. 4.17 which compares monotonic responses of a uniformly axially loaded 

member modeled using both the spring and the distributed nonlinearity approach. The curves 

show the displacement δ applied at the top end versus the axial reaction P at the bottom support. 
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The two models produce the same P-δ response, however from Fig. 4.18 can be seen that 

localization of inelastic behavior does not occur in the member with distributed nonlinearity 

since all cross-sections deform the same. On the other hand the spring model inherently 

concentrates all nonlinear behavior at the bottom end. 

 

 
Fig. 4.17. Comparison between spring model and nonlinear beam-column model. 

 

 
Fig. 4.18. Axial member subjected to uniform load showing all cross-sections deforming  

the same amount and localization of inelastic strains is not present.  
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Now comparing the response for same the column but subjected to non-uniform 

distributed axial load, the P-δ responses obtained using both approaches are not the same, see 

Fig. 4.17. The response from the spring model is exactly the same as for the uniform load case 

since the parameters defining its behavior are kept the same as the uniform load. This results 

suggest the displacement backbone coordinates need modification to accommodate this loading 

case. For the distributed nonlinearity model, the response appears stiffer than the uniform load 

case, and with displacements at the top end smaller than those from the spring model. 

Localization is observed for the distributed nonlinearity approach as shown in Fig. 4.19 where 

cross-sections towards the bottom end are in the inelastic range while towards the top cross-

sections unloaded and remained linear elastic. 

 
Fig. 4.19. Axial member subjected to non-uniform load showing localization  

of inelastic behaviour at the bottom end. 
 
One can conclude from the two comparisons that because of the uniform axial strain 

distribution assumption used in the dispBeamColumn (or similar) element, the localization 

behavior cannot be captured for the case of uniform axial load using the distributed nonlinearity 

approach. If capturing localization is of interest, then using the spring modeling approach is 

suggested and the user is required to select a priori the location where all nonlinearity will 
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concentrate. Selecting the location of the spring can be difficult if the axial load can become non-

uniformly distributed along the member at any time during the analysis. 

For members subjected to non-uniform distributed axial load, inelastic behavior 

localization may occur automatically when the most stressed/loaded cross-cross-section starts 

softening resulting in unloading of the adjacent cross-sections. This type of behavior can be 

simulated with the dispBeamColumn element (or similar) and does not require the user to 

consider where nonlinear behavior will concentrate before running an analysis. Even tough 

localization cannot be captured using the distributed nonlinearity approach for the case of 

uniform axial load, the energy dissipation and the load-deflection response P-δ are still properly 

captured. 

The proposed methodology is established for thin-walled cold-formed steel members, 

however the asymPinching parameters are presented generally as a function of local buckling 

slenderness λℓ and could be extended to hot-rolled steel members and cross-sections with future 

validation. Moreover, the methodology presented can be applied to thin-walled cold-formed steel 

members that experience distortional and global buckling deformations with further finite 

element validation. In the next chapter the asymPinching model is used to explore local buckling 

effects in the response of sheathed cold-formed steel shear walls and demonstrate how to 

implement this into structural system analyses. 
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Chapter 5: Nonlinear Hysteretic Models for Cold-Formed 
Steel Screw-Fastened Connections Simulation 

 
Typical connections in cold-formed steel buildings include steel-to-steel and steel-to-

sheathing (wood/gypsum) connections such as those shown Fig. 5.1. In this chapter a hysteretic 

model for simulating screw-fastened connections subjected to shear forces (i.e., forces 

perpendicular to the fastener longitudinal axis) is proposed. The hysteretic model is aimed to 

capture the cyclic shear force-deformation response and energy dissipation of common for 

common CFS connections limit states including tilting, bearing, tilting + bearing, and screw 

shear limit states. Model parameters can be formulated as functions of the fastener type (i.e., 

screw size, and head type), connecting parts thickness, and boundary conditions around the 

screw. However, the work presented in this chapter focuses on evaluating and developing an 

efficient model for finite element analysis that is easy to implement rather than obtaining general 

expressions for the model parameters themselves.  

 

 
Fig. 5.1. Typical screw-fastened cold-formed steel connections. 

 

(a) Stud – Stud

(d) Strap – Stud (f) Joist – Track and Strap – Track/Stud
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(c) Hold-down to Chord Stud

HOLDDOWN
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STRAP
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BASE	  TRACK
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(b) Stud – Track and Strap – Track/Stud
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It has been shown with experiments and simulations that cold-formed steel to sheathing 

connections dictates the behavior in the commonly used sheathed shear walls used for cold-

formed steel buildings [87, 88, 89]. Experimental research [95] was conducted on CFS-sheathing 

connections to characterize their hysteretic response (see Fig. 5.2). A total of 24 cold-formed 

steel to sheathing connections were tested varying sheathing materials, steel ply thickness and 

fastener spacing to study their influences. The test results were fitted to Pinching4 material 

model. The fitted material model served as important input for the shear wall numerical studies 

presented later in the following chapters. In the following section a review of common 

approaches used to model screw-fastened connections by previous researchers is reviewed as it 

provides background for the model implementation in ABAQUS discussed towards the end of 

this chapter. 

 
Fig. 5.2. CFS-sheathing connection test (a) and monotonic response (b). 

 
5.1 Reviewing of some numerical models for fastened connections  

5.1.1 CASHEW fastened connection based shear wall modeling 

CASHEW stands for “Cyclic Analysis of Shear Walls” [90] and it is written for wood 

framed shear wall analysis. In this software, framing members are modeled as rigid members 

with pin-ended connections. As a result, the framing system itself without sheathing deforms as a 

mechanism and provides no lateral stiffness (see Fig. 5.3). It also ignores any out-of-plane 

deformations in the shear wall. From these assumptions, the equilibrium equation are formulated 

using the principle of virtual work considering only the contributions to the virtual work from 

sheathing and connections. 

 

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

Displacement (in)

Lo
ad

 (l
b)

54 mil, OSB, 12’’ spacing

(a) 

(b) 



 

52 

 
Fig. 5.3. Shear wall deformation in CASHEW 

 

Framing-sheathing connection are defined with the hysteresis model in Fig. 5.4 originally 

proposed by [91]. The hysteresis model can simulate pinching behavior with strength and 

stiffness degradation. Connections are modeled as a pair of orthogonal uncoupled springs both 

assigned with this hysteresis model. The reason behind this modeling approach results from the 

complexity of connector behavior. The deformation trajectory of a connector under a monotonic 

analysis of the shear wall was found to be almost unidirectional and a single nonlinear spring 

was supposed to be suitable for monotonic analysis [90]. However, under cyclic analysis, the 

connector displacement trajectory was bi-directional making it difficult to differentiate positive 

and negative connection displacement. To avoid this displacement sign issue, uncoupled spring 

pair model was adopted in CASHEW. 
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Fig. 5.4. Connection hysteresis model adopted in CASHEW 

 

This uncoupled spring pair model results in an overestimation of connection strength and 

stiffness. An internal adjustment strategy was adopted inside the program to overcome this 

obstacle. The strategy reduced the connector spacing, and therefore the number of connections, 

to match the energy absorbed in a monotonic analysis by the two-spring model with energy in 

the one-spring model [90]. With this adjustment, connection strength and stiffness 

overestimation was alleviated but not generally solved. 

 
Fig. 5.5. Single spring model (a), and uncoupled spring pair model (b). 
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CASHEW used displacement control and the Newton-Raphson method to find shear wall 

load-deformation response. It was found that the shear wall global tangent stiffness can become 

non-positive definite and the solution strategy would sometimes struggle to converge. To 

overcome this numerical issue, CASHEW internally added an axial spring at the top of shear 

wall to ensure that combine global tangent stiffness remained positive definite during analysis 

[92]. 

5.1.2 OpenSees fastened connection based shear wall modeling 

Models implemented in OpenSees featuring monotonic and cyclic analysis have been 

well studied [84, 87]. In these OpenSees models the CFS-sheathing connections are modeled 

using CoupledZeroLength elements (Fig. 5.6), which are assigned the hysteretic behavior model 

Pinching4. Two features make the CoupledZeroLength element very suitable for modeling CFS-

sheathing connections. First, the element is a single shear spring capable of rotating its 

orientation in the plane of the shear wall. Therefore, the connection strength and stiffness are not 

overestimated in comparison to the CASHEW uncoupled spring pair model discussed in 

previous section. Also, CoupledZeroLength determines connection positive and negative 

displacement by element orientation. This ensures that positive and negative displacement can be 

differentiated for a bidirectional trajectory. 

 

 
Fig. 5.6. CFS framed shear wall model in OpenSees 

 

5.1.3 Modeling fastened connection in ABAQUS 
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Modeling sheathed CFS shear walls using high fidelity finite element models (e.g., thin-

shell elements models in ABAQUS), in addition to the overall wall behavior, they can also 

provide additional details of the members and sheathing behavior (e.g., buckling deformations). 

For this more detailed models the CFS-sheathing connections is modeled using SPRINGA 

elements (Fig. 5.7). SPRINGA is a 2-node axial spring element in ABAQUS. Two important 

features make it suitable for modeling CFS-sheathing connections. Unlike conventional spring 

elements, SPRINGA considers geometric nonlinearity. This means that its line of action can be 

rotated during analysis instead of being fixed to X, Y or Z directions. This feature avoids 

overestimation of connection strength and stiffness. Also, some level of material nonlinearity is 

included in this model, see Fig. 5.7. 

 
Fig. 5.7. Nonlinear spring force–relative displacement relationship for SPRINGA in ABAQUS 

 

However, shear wall model with CFS-sheathing connections modeled by SPRINGA can 

only be used for monotonic analysis. Due to software limitations, complete CFS-sheathing 

connection hysteresis cannot be defined in SPRINGA because the model lacks definitions for 

cyclic strength and stiffness degradations, as well as definitions for nonlinear inelastic loading 

reloading paths. To achieve high-fidelity modeling applicable to both monotonic and cyclic 

analysis, ABAQUS needs an extension that incorporates complete CFS-sheathing connection 

hysteresis and algorithm resolving this bidirectional trajectory issue. The following sections 

describes the implementation of a spring model for ABAQUS that overcomes the difficulties 
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mentioned when using SPRINGA. The model is implemented to simulate the behavior of CFS 

screw-fastened connection subjected to shearing forces as observed in the experiments [95]. 

 

5.2 CSF Connection hysteretic model using ABAQUS user element (UEL) 

A user element subroutine (UEL) is not a standalone program that can conduct finite 

element analysis. It needs to be linked to ABAQUS. Once linked, UEL will be called every time 

when ABAQUS needs information from the UEL (Fig. 5.8). In each call by ABAQUS, the UEL 

will be provided with element geometry information (coordinates, displacement and etc.), UEL 

properties, and solution-dependent variables from the last increment and analysis procedures. By 

using the information provided by ABAQUS, the UEL calculates and returns to ABAQUS a 

Jacobian matrix and force residuals contributed by the UEL and the updated solution-dependent 

variables. Solution-dependent variables are carried in a vector where users can save data to be 

used in the next increment. It is the only way that element loading history can be retrieved. 

 
Fig. 5.8. ABAQUS-UEL work flow diagram 

 

In order to model nonlinearity of screw-fastened connections, the Pinching4 model is 

implemented inside the UEL. The implementation is made possible by three important sections 

in the UEL (Fig. 5.9). A local subroutine is coded to calculate element deformation and 

orientation based on geometric information from ABAQUS. Given the element deformation, the 

Pinching4 model returns element force and stiffness. With the element force and stiffness, 

several local subroutines return element nodal force vector and stiffness matrix. Table 5.1 lists 

the local subroutines responsible for the functions discussed above. 

ABAQUS/Standard User element 
subroutine (UEL)

UEL properties

element stiffness matrix

element nodal force vector

nodal displacement
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Fig. 5.9. UEL computational work-flow. 

 

Table 5.1. Local subroutines used in the UEL 
Subroutine Output 

SGEOM(…) Return spring deformation, orientation 
PINCHING4(…) Return spring force and stiffness 
SAMATRX(…) Return element stiffness matrix 
SNFORCE(…) Return element nodal force vector 
SUEL2PIN(…) Converts data from soultion-depedent variable vector to Pinching4 local variables 
SPIN2UEL(…) Converts data from Pinching4 local variables to solution-depedent variable vector 

SetEnvelop(…) Sets the initial backbone envelope for the material based 
upon the input by the user 

revertToStart(…) Initialization process for the material at start 

revertToLastCommit(…) Return back to its last commited state in case the 
analysis fails 

setTrialStrain(…) 
Sets a displacement demand of the material based upon 
its previous stiffness and also the residual force vector 
return 

commitState(…) Commits the history variables of the material model after the state-check has been 
done for the material model 

getstate(…) Determines the state of the material based upon the 
material history and current stress demand 

posEnvlpStress(…) 
negEnvlpStress(…) Returns positive/negative damaged stress of the material 

posEnvlpTangent(…) 
negEnvlpTangent(…) Returns positive/negative tangent of the material 

Envlp3Stress (…) 
Envlp4Stress (…) 

Determines the stress of the envelope at state 3 or state 4 
of the material 

Envlp3Tangent (…) 
Envlp4Tangent (…) 

Determines the tangent of the envelope at state 3 or state 
4 of the material 

updateDmg(…) Apply stiffness and strength degradations 
 

As shown in Table 5.1, the local subroutine PINCHING4 is where the hysteretic behavior 

is directly implemented. The C++ source code of the Pinching4 model from OpenSees was 

translated into FORTRAN with a few modifications made to fit ABAQUS coding style (implicit 

variable declaration). The implementation uses solution-dependent variables to retrieve loading 

history and determine the evolutionary load paths and damage rules. For this purpose, all 

Pinching4 variables are saved into a solution-dependent variable vector (SVARS) at the end of 

each increment so that these parameters can be retrieved in the next increment. 

Element Geometry Nonlinear Model

update force

element orientation stiffness matrix

Element Formulation

update stiffness

element deformation nodal force vector
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Screw-fastened connections are idealized as springs with independent behavior in the 

positive and negative loading excursions. Four different behaviors are implemented in the UEL 

as described in the following sections. Any of these behaviors can be selected for simulating 

screw-fastened connections. The objective is to provide users with flexibility in simulations. All 

these spring models are intended to only simulate connection shear behavior. Fastener 

withdrawal behaviors (i.e., pull-out or pull-though) are not considered here and can be a topic for 

future study. Thus, all of the spring models work in 2-dimensional plane – sheathing or 

diaphragm plane. Because ABAQUS allows user element to have 3D coordinates but only 2D 

degrees-of-freedoms, the UEL proposed herein can still be used for 3D analysis in ABAQUS. 

5.2.1 Model 1: Uncoupled two-spring model 

Uncoupled two-spring model is a model composed of two orthogonal springs aligned in 

the global X and Y directions as shown in Fig. 5.10. Each spring is assigned with Pinching4 

material of the same properties.  

 
Fig. 5.10. Uncoupled two-spring model for CFS screw-fastened connections 

 

The force resultant of the two springs represents the connection resisting force. The 

stiffness matrix K and nodal force vector F are,  
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The advantage of the two-spring model is that it is very “stable”. The spring orientations 

are fixed in global X and Y directions so that divergence induced by spring changing orientation 

is not a big concern. The disadvantage is overestimation of connection strength and stiffness. 

5.2.2 Model 2: Oriented spring-pair model 

Oriented spring pair model is an improved version of uncoupled two-spring model 

proposed by Judd [93] to alleviate strength and stiffness overestimation. Still, each spring is 

assigned with the Pinching4 material model of the same properties. Compared to the uncoupled 

two-spring model, two orthogonal springs are not oriented towards the global X and Y 

directions. Instead, spring orientations are determined based on the initial spring deformation 

trajectory. In practice, in the 1st increment, uncoupled two-spring model is used. The spring 

deformation (δx0, δy0) from the 1st increment is then utilized to establish spring orientations for all 

the following increments. 

 
Fig. 5.11. Oriented spring-pair model for CFS screw-fastened connections 
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5.2.3 Model 3: Coupled two-spring model 

Coupled two-spring model is a spring model available in OpenSees named 

CoupledZeroLength. It is a pair of orthogonal coupled springs aligned in global X and Y 

directions where the resultant deformation is calculated following the diagram shown in Fig. 

5.12. In contrast to uncoupled two-spring model and oriented spring pair, only a Pinching4 

material model is assigned. Instead of spring deformation in global X and Y directions, the 

spring deformation resultant is input to the Pinching4 material model which outputs the spring 

force resultant. The coupling between X and Y directions are achieved by transforming spring 

force to X and Y directions as shown in Eq.5.9. However, though with coupling, the spring 

stiffness matrix is in the uncoupled format as shown in equation 5.8. 
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Fig. 5.12. Deformation quadrants of coupled two-spring model. 

 

5.2.4 Model 4: Radial spring model 

The radial spring model, shown in Fig. 5.13, is a single spring model capable of updating 

its orientations in an analysis. Previous research indicated that single spring model is very 

suitable in simulating connection behavior. However, because single spring model cannot 

simulate “bi-directional” or cyclic deformation, this model is not applied to cyclic analysis. In 

order to simulate bi-directional deformation, a radial spring adopts a set of deformation 

quadrants so that “positive” and “negative” spring deformation can be differentiated. This set of 

deformation quadrants is an improved version of its counterpart in the coupled two-spring model 

in 5.2.3. Instead of being divided by X+Y=0 line, deformation quadrants are divided based on 

spring initial deformation trajectory as depicted in Fig. 5.14. Assuming that spring deformation 

trajectory does not change over a 90° angle, the quadrant division line is orthogonal to the initial 

spring deformation trajectory. 
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Fig. 5.13. Radial spring model 

 

 

Fig. 5.14. Deformation quadrants of radial spring 
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where 

k	   =	   spring	  axial	  stiffness	  

f	   =	   spring	  axial	  force	  

l	   =	   spring	  current	  length	  

φ	   =	   angle	  between	  spring	  deformation	  and	  global	  X	  axis	  

 

The user element proposed herein is a combination of Pinching4 nonlinear hysteretic 

model and spring element formulation. The four spring models previously described have all 

attached the hysteretic Pinching4 model. In the next chapter, the Model 4 (radial spring model) is 

selected to be attached with Pinching4 model for verification. 

5.3 Verification of the UEL implementation 

To ensure a successful implementation of the connection model in ABAQUS, the 

proposed ABAQUS user element (UEL) is verified against OpenSees. For this purpose, two sets 

of parameters are selected for validating backbone, unloading–reloading path, and degradation.  

5.3.1 Backbone and unloading–reloading path verification 

A screw-fastened steel to OSB connection is modeled to validate the backbone and the 

pinching path. The connection is modeled using a zeroLength element in OpenSees and UEL 

(Model 4 - radial spring) in ABAQUS. As shown in Fig. 5.15, the node 1 is restrained at the 
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degree-of-freedoms UX and UY, while node 2 is restrained only in the direction UY. The 

prescribed displacement history shown in Fig. 5.16 is applied in the UX direction at node 2. 

 
Fig. 5.15. Model using the proposed UEL for backbone and unloading-reloading path verification 

 

 
Fig. 5.16. Prescribed displacement history 

 

A total of 6 CFS-sheathing connection tests are simulated respectively in ABAQUS and 

OpenSees. All Pinching4 model parameters and loading protocols are taken from steel-to-OSB 
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verification models are adopted from the work presented by [95] and is listed by convenience in 

Table 5.2. For this verification, degradation parameters are set to be zero.  

Table 5.2. Parameters for backbone and unloading-reloading path verification examples 
Model ePd1 ePd2 ePd3 ePd4 ePf1 ePf2 ePf3 ePf4 eNd1 eNd2 eNd3 eNd4 eNf1 eNf2 eNf3 eNf4 

 (in.) (kip.) (in.) (kip.) 
c33-o6-1 0.018 0.069 0.241 0.540 0.158 0.298 0.371 0.021 -0.024 -0.077 -0.267 -0.494 -0.211 -0.313 -0.427 -0.052 

c33-o12-1 0.021 0.050 0.207 0.446 0.142 0.211 0.327 -0.013 -0.019 -0.085 -0.266 -0.447 -0.123 -0.248 -0.324 -0.018 
c54-o6-1 0.016 0.064 0.241 0.344 0.160 0.286 0.409 0.022 -0.025 -0.097 -0.223 -0.402 -0.234 -0.374 -0.475 -0.056 

c54-o12-1 0.019 0.077 0.230 0.427 0.207 0.381 0.475 0.054 -0.019 -0.114 -0.258 -0.445 -0.204 -0.361 -0.466 -0.065 
c97-o6-1 0.011 0.041 0.084 0.229 0.164 0.313 0.359 0.015 -0.012 -0.049 -0.112 -0.234 -0.194 -0.361 -0.380 -0.004 

c97-o12-1 0.011 0.036 0.067 0.121 0.218 0.405 0.475 0.049 -0.010 -0.040 -0.088 -0.132 -0.197 -0.432 -0.494 -0.038 
 

Fig. 5.17 and Fig. 5.18 compare the load deformation response and energy dissipation 

obtained using the UEL in ABAQUS to the zeroLength spring model in OpenSees for a 54mils 

to 7/16 in. OSB connection with a 6 in. screw spacing (c54o6_1 in Table 5.2). It can be seen that 

the load deformation and energy dissipation responses are identical. Similar results obtained for 

the other connections listed in Table 5.2 are provided in Appendix XX. The identical backbone 

and unloading-reloading behaviors obtained using the both models are proof that the UEL 

backbone and unloading-reloading path behavior are successfully implemented in ABAQUS. 

 

Fig. 5.17. Load-deformation response for test c54o6_1 
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Fig. 5.18. Energy dissipation for test c54o6_1 

 

5.3.2 Cyclic strength and stiffness degradation verification 

The model in Fig. 5.15 is provided with parameters to simulate degradation for validation 

of the UEL implementation. The hysteretic model parameters are listed in Table 5.3 and Table 

5.4. The degradation parameters listed in Table 5.4 were defined arbitrarily to test the UEL, 

however they do not necessarily represent actual CFS screw-fastened connection behavior. 

Strength degradation, unloading stiffness degradation and reloading degradation are studied 

independently. Fig. 5.19 to 5.24 show that the load deformation and energy dissipation obtained 

using the UEL are identical to the ones obtained in OpenSees. Thus, strength and stiffness 

degradation are successfully implemented in the UEL. 

 
Table 5.3. Backbone coordinates for degradation verification examples. 

ePd1 ePd2 ePd3 ePd4 eNd1 eNd2 eNd3 eNd4 ePf1 ePf2 ePf3 ePf4 eNf1 eNf2 eNf3 eNf4 
(in.) (in.) (kip) (in.) 

0.020 0.078 0.246 0.414 -0.020 -0.078 -0.246 -0.414 0.220 0.350 0.460 0.049 -0.220 -0.350 -0.460 -0.049 
 

Table 5.4. Degradation parameters for degradation verification examples 
Degradation  γ1 γ2 γ3 γ4 γ lim 

Unloading stiffness 0.250 0.850 0.650 0.120 1000.000 
Reloading stiffness 2.740 0.240 1.720 0.980 1000.000 

Strength 0.160 1.170 0.530 0.460 1000.000 
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Fig. 5.19. Load-deformation for strength degradation verification case 
 

 

Fig. 5.20. Energy dissipation for strength degradation verification case 
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Fig. 5.21. Load-deformation response for unloading stiffness degradation verification case 
 

 

Fig. 5.22. Energy dissipation for unloading stiffness degradation verification case 
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Fig. 5.23. Load deformation response for reloading stiffness degradation verification case 
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Fig. 5.24. Energy dissipation for reloading stiffness degradation verification case 
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Chapter 6: Simulation Framework for  
Cold-Formed Steel Structures 

 
Cold-formed steel structures subjected to extreme loads, like those due to seismic 

loading, are designed such that lateral loads are resisted by shear wall systems and floor 

diaphragms. The behavior of these systems is governed by the components individual behavior 

(e.g., chord studs, floor joists, and sheathing), and their interaction within the system through the 

connections (e.g. screw-fastened connections). The components and connections can exhibit 

nonlinear behavior that needs to be considered for performance and analysis based design of CFS 

framed structures. This chapter introduces a computationally efficient component-based 

framework for the analysis of cold-formed steel structures that captures the nonlinear behavior in 

all critical components in detail. 

6.1 Simulation framework  

The component-based simulation framework is supported by nonlinear models for 

framing members, screw-fastened connections and other components in light-framed steel 

structures assembled in finite element models for accurate gravity load analysis, wind analysis, 

seismic design and other extreme loading conditions. The modeling approach described herein 

complements the efforts from the CFS-NEES projects to advance analysis and performance 

based design of cold-formed steel structures described in [15,82] by introducing the nonlinear 

behavior in the framing members. The framework provides the ability to simulate behavior 

including limit states related to framing members (e.g., local buckling), single screw-fastened 

connection limit states and/or sheathing buckling/failure in CFS structures. An outline of the 

simulation framework for CFS subsystems is illustrated in Fig. 6.1 where the framing members 

in a sheathed CFS shear wall are modeled using nonlinear-beam columns, and connections 

between framing members (CFS studs and tracks) and sheathing are modeled using nonlinear 

hysteretic springs.  

The supporting models necessary for the framework are those that govern the behavior of 

each component, i.e., framing members, sheathing elements, and connections. To model framing 

elements the approach in Chapter 3 is used to include thin-wall behavior into the analysis of 

framing members for the three buckling limit states described by AISI-S100-12 [22] (see Fig. 3.1 
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and 3.4). In Chapter 4 this approach was expanded to provide general expressions and the 

asymPinching model to simulate steel columns including local buckling. A similar approach to 

the one described in Chapter 4 together with the procedure described in Chapter 3 can be adopted 

to simulate framing members governed by distortional or global buckling using the 

asymPinching model. 

 
Fig. 6.1. Simulation framework outline for cold-formed steel systems where hysteretic models for  

members, single screw-fastened connections, and sheathing can be assembled to explore  
different limit states in CFS shear walls. 

 
Models to simulate the connections between components depend on the type of 

connection and should provide flexibility to model different types of structural systems. In cold 

formed steel structures connections between components are usually screw-fastened connections 

and less commonly welded. Modeling welded connections can be approached in a simplified 

manner by constraining the appropriate degrees of freedom unless damage of the connection and 

respective limit states are of interest. In this last case, the proper models need to be provided. In 
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the case of the most used type of connection in cold-formed steel structures, the screw-fastened 

connections, a single screw-fastened connection model is suggested. For the proposed 

framework, single screw-fastened connections are modeled using nonlinear zero length springs 

with parameters derived from experiments (e.g., [83]). Fig. 6.2 illustrates the spring model with 

behavior modeled using Pinching4. Modeling each fastener involved in a connection can provide 

the flexibility needed for this type of connection and eases the formulation of a model.  

 
Fig. 6.2. Hysteretic model for single screw-fastened connection. 

 
The next section illustrates the component-based simulation framework applied to the 

analysis of full scale cold-formed sheathed shear walls and explores the possible limit states 

pertaining to the framing members. Simulations are compared to responses from full scale tested 

wood-sheathed shear walls tested at the University of North Texas [12,13].  

6.2 Component-based modeling of CFS shear walls [3] 

A finite element model for a sheathed CFS shear wall was implemented in OpenSees 

following the framework depicted in Fig. 6.1. The base model corresponds to a full scale on side 

wood sheathed CFS shear wall design employed in the CFS-NEES building [19,20] and tested as 

a single unit at the University of North Texas [12,13]. The wall unit is 2.74m high and 1.22m 

wide framed using back-to-back 600S162-54 CFS members fastened using two #10 fasteners 
                                                                                                                                                                                                    
[3] This section is a continuation of the work presented in the coauthored conference paper presented at the 2015 

SSRC Annual Stability Conference with the title “OpenSees Modeling of Wood Sheathed Cold-Formed 
Steel Framed Shear Walls” [84]. 
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every 305mm for the chord studs and a single 600S162-54 CFS member 610mm off center 

between the two chord studs (see Fig. 6.3). Two 600T162-54 CFS tracks at the top and bottom of 

the wall connect the vertical members together using #10 flat-head fasteners. A wood oriented-

strand board (OSB) is fastened to one side of the steel frame using #8 flat-head fasteners spaced 

every 305mm as shown in Fig. 6.3. A steel strap 38mm wide and 1.438mm thick is used to fasten 

the OSB to the steel frame at the seam located 305mm from the top of the wall. A ledger 

1200T200-97 track that serves to connect the wall to the floor diaphragm is fastened to the 

vertical members at the top of the wall and on the opposite side of the OSB panel. Vertical wall 

support is provided by two Simpson Strong-Tie S/HDU6 hold downs connected to the chord 

studs bottom inward face using #14 hex-head fasteners. Two 15.875mm (5/8in.) bolts connect 

the bottom track to the bottom of the testing frame. 

 
Fig. 6.3. Cold-formed shear wall front and back side detail [12]. 

 

6.3 Shear wall numerical model 

The base numerical model of the shear wall is implemented herein using OpenSees [24] 

as illustrated in Fig. 6.4. The model uses nonlinear beam-columns elements with cross-section 
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behavior simulated using asymPinching to model the steel framing members, shell elements to 

model the sheathing panels and zero-length elements with hysteretic behavior using Pinching4 to 

model all the screw-fastened connections. In OpenSees the nonlinear beam-columns are 

implemented using dispBeamColumn elements with the Gauss-Lobatto quadrature rule and at 

least five integration points, two at both ends of the member. A single element is used to model 

the built-up chord studs at both sides of the wall for simplicity, however the approach is the same 

if the built-up chord stud needed to be modeled. The fastener connections are implemented using 

CoupledZeroLength elements that allow defining the fastener force-deformation relationship on 

the plane parallel to the sheathing. The OSB panel is modeled using ShellMITC4 elements to 

accommodate any deformations the sheathing can experience. The track-to-vertical framing 

members connection are modeled for simplicity by constraining the translational degrees of 

freedom and assuming linear spring with rotational stiffness k =113kN-m/rad based on 

approximations from measured lateral stiffness of bare frame [12]. Similarly, the translational 

and rotational degrees of freedom at the ends of the ledger track were constrained to 

corresponding nodes in the vertical studs. The hold-downs were modeled using elastic 

zeroLength springs with stiffness k=56.7kN/mm in tension while stiffness in compression was 

set 1000 times larger to simulated the contact with the foundation. Additional springs with large 

stiffness in compression and close to zero stiffness in tension were provided along the bottom 

track to simulate contact with the foundation while allowing uplift of the track nodes. Shear 

anchors were modeled by fixing the horizontal degree of freedom at two of the track nodes next 

to the hold-downs. 

The base model was modified to help illustrate the nonlinear behavior in the vertical 

framing members and the differences in the failure mechanism due to the development of local 

buckling on the chord studs. In the modified model the vertical framing members slenderness has 

been set to a specific value but the rest of the properties (i.e., thickness, area and inertia) have 

been kept unchanged from the base model. The intention with these modified models is to study 

the effects of the vertical member slenderness on the response. The influence of the gravity load 

is included as well as this will trigger the nonlinear behavior in the vertical members and it 

represents more realistic loading conditions. Table 6.1 and Table 6.2 summarize the modeling 

scenarios implemented and properties of the framing members used. Properties for single screw-
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fastened connection between the OSB panel and steel depicted in Fig. 6.4 are adopted from the 

work performed by Peterman et al. [83] and are also listed in Table 6.3. 

 
Fig. 6.4. Shear wall model and fastener properties. 

 
Table 6.1. Shear wall model matrix. 

Model Gravity Load P 
[kN] (a) 

Fastener 
Schedule 

Chord 
Stud (a) 

Infill 
Stud (a) 

Stud 
λℓ 

Stud Type Sheathing 

SW1-a 0.00Pn= 0.0 #8 @ 152mm 2x54 1x54 1.89 asymPinching 7/16" OSB 
SW1-b 0.25Pn= 16.9 #8 @ 152mm 2x54 1x54 1.89 asymPinching 7/16" OSB 
SW1-c 0.50Pn= 33.8 #8 @ 152mm 2x54 1x54 1.89 asymPinching 7/16" OSB 
SW1-d 0.75Pn= 50.7 #8 @ 152mm 2x54 1x54 1.89 asymPinching 7/16" OSB 
SW2-a 0.00Pn= 0.0 #8 @ 152mm 2x33 1x33 2.51 asymPinching 7/16" OSB 
SW2-b 0.25Pn= 5.6 #8 @ 152mm 2x33 1x33 2.51 asymPinching 7/16" OSB 
SW2-c 0.50Pn= 11.2 #8 @ 152mm 2x33 1x33 2.51 asymPinching 7/16" OSB 
SW2-d 0.75Pn= 16.8 #8 @ 152mm 2x33 1x33 2.51 asymPinching 7/16" OSB 
SW3 0.50Pn= 11.2 #8 @ 152mm 2x33 1x33 2.51 Elastic 7/16" OSB 
SW4 0.50Pn= 11.2 #8 @ 152mm 2x33 1x33 2.51 Pinching4 7/16" OSB 
SW5-a 0.50Pn= 50.6 #8 @ 152mm L1 L1 1.06 asymPinching 7/16" OSB 
SW6-a 0.50Pn= 41.4 #8 @ 152mm L2 L2 1.42 asymPinching 7/16" OSB 
SW7-a 0.50Pn= 33.9 #8 @ 152mm L3 L3 1.89 asymPinching 7/16" OSB 
SW8-a 0.50Pn= 30.8 #8 @ 152mm L4 L4 2.15 asymPinching 7/16" OSB 
SW9-a 0.50Pn= 27.5 #8 @ 152mm L5 L5 2.51 asymPinching 7/16" OSB 
SW5-b P= 27.5 #8 @ 152mm L1 L1 1.06 asymPinching 7/16" OSB 
SW6-b P= 27.5 #8 @ 152mm L2 L2 1.42 asymPinching 7/16" OSB 
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SW7-b P= 27.5 #8 @ 152mm L3 L3 1.89 asymPinching 7/16" OSB 
SW8-b P= 27.5 #8 @ 152mm L4 L4 2.15 asymPinching 7/16" OSB 
SW9-b P= 27.5 #8 @ 152mm L5 L5 2.51 asymPinching 7/16" OSB 
(a) See Table 6.2.  
 

Table 6.2. Framing element properties. 
Name (a) SSMA 

Section 
Py  

[kN] 
A  

[cm2] 
Iy  

[cm4] 
Ix  

[cm4] 
Slenderness 

λℓ 
Predicted 
Strength 

[kN] 
2x54 600S162-54 250.4 7.26 24.21 243.987 1.89 135.2 
1x54 600S162-54 123.7 3.59 7.50 118.959 1.89 67.6 
2x33 600S162-33 101.0 4.44 14.55 149.152 2.51 44.9 
1x33 600S162-33 50.5 2.22 4.83 74.572 2.51 22.5 
L1 - - 3.59 7.50 118.959 1.06 101.1 
L2 - - 3.59 7.50 118.959 1.42 82.7 
L3 - - 3.59 7.50 118.959 1.89 67.7 
L4 - - 3.59 7.50 118.959 2.15 61.6 
L5 - - 3.59 7.50 118.959 2.51 55.0 

(a) 2x indicates a built-up member and 1x indicates a single member 
 

Table 6.3. Fastener backbone and Pinching4 properties. 
Connection δ1 δ2 δ3 δ4 V1 V2 V3 V4 rδ rf uf 

7/16"OSB-to-97mils 0.152 2.101 7.165 12.789 1.108 1.998 2.274 0.077 0.410 0.010 0.001 
7/16"OSB-to-54mils 0.559 3.145 11.740 20.711 0.855 1.710 2.224 0.220 0.420 0.010 0.001 
7/16"OSB-to-33mils 0.871 3.701 12.779 15.080 0.760 1.500 1.900 0.012 0.410 0.010 0.001 
See Fig. 6.2 

 

6.4 Monotonic and cyclic response of the shear wall base model 

The monotonic and cyclic responses of the base model (SW1) are shown in Fig. 6.5 and 

compared to the experimental response obtained from the full scale tests performed by Liu et.al 

[12]. Local buckling was included in the vertical members using the asymPinching model and 

properties from Table 6.3 for the 7/16”OSB-to-54mils fastened connection were selected. 

Gravity loads were not applied at the top of the load. The simulated monotonic and cyclic 

responses show reasonable agreement to the experimental response including the failure 

mechanism. The failure mechanism observed in the tests consisted of fastener failure along the 

bottom and bottom-side edges of the wall which resulted on the sudden drop in strength observed 

in the curves shown in Fig. 6.5. Some difference exists in the post-peak monotonic response due 

to the inclusion of the contact springs along the bottom track, however this difference is 

neglected for the purpose of the study presented in this chapter and the numerical model adopted 

is considered adequate. 
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Fig. 6.5. Simulation to experiments comparison shows reasonable agreement between responses. 

 

6.5 Nonlinear stud vs. linear stud behavior effects on the CFS shear wall response 

Local buckling in the vertical framing members in walls is commonly addressed as a 

strength limit state only in design but rarely accounted explicitly during lateral load analysis and 

in CFS structures. Local buckling can affect greatly the shear wall response and failure 

mechanism observed in analysis. To illustrate this, responses of a modified version of the shear 

wall base model subjected to both gravity load and lateral pushover loading are compared. In the 

modified model the vertical members were replaced with thinner stud (600S162-33) which 

strength is governed by local buckling. Three approaches for modeling the studs were 

considered, in the first one (labeled SW3 in Table 6.1) the members are modeled as elastic beam-

column elements with axial stiffness k1 given in Table 4.3. For the second approach (SW2-c in 

Table 6.1), local buckling in the members was included using the asymPinching model. In the 

third approach (SW4 in Table 6.1) local buckling was included using the alternative equations 

given in Chapter 4 for the Pinching4 model. Gravity loading is simulated as point loads applied 

at the top end of each vertical member and corresponding to 50% of the individual stud strength 

(i.e., P= 0.5Pn).  

The pushover responses compared in Fig. 6.6 show clearly that the wall with elastic 

vertical members can reach higher strength at larger deformation than the wall that includes local 

buckling in the studs. From Fig. 6.7 and 6.9 the failure mechanism in the wall with elastic 

framing members is as expected driven by fastener failure along the edges. Moreover, in this 

wall the compression load developed in the stud to the right increases from an initial value of 
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0.5Pn to a value twice the predicted single stud strength Pn. This high compressive load occurs 

before the drop in strength shown in the pushover curve in Fig. 6.6 after which the studs unload 

considerably (see Fig. 6.7b-g). Conversely, for the wall including local buckling in the studs, the 

failure mechanism is triggered by local buckling on the compression stud (right) as shown in Fig. 

6.8. Most fasteners exhibit low force and deformation demands with most of them remaining on 

the ascending part of their load deformation response (Fig. 6.10). The axial load in the 

compression stud is capped at the predicted stud strength which occur slightly before the drop in 

strength shown in the corresponding pushover curve (Fig. 6.8).  

 
Fig. 6.6. Comparing shear wall with and without including local buckling (SW2-c and SW4). Modeling 

the chord studs elastic results in overestimation of the wall strength and maximum top displacement. 
 

The main conclusion drawn from this comparison relates to the need to include local 

buckling when analyzing structural systems with thin walled members such that all possible 

design limit states are considered. Recalling the response for the base model (no gravity load) in 

Fig. 6.5, the vertical members were modeled including local buckling but they remained elastic 

with loads below their predicted strength, and the failure mechanism was fastener controlled like 

in the test. Using elastic beam column in the base model would yield the same response as if 

local buckling in the studs is considered. However, a small but significant modification such as 

changing the thickness of the vertical members can trigger a different failure mechanism, and 

reduce the wall strength and ductility. This difference can go unnoticed if the nonlinear behavior 

is not included.  
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Fig. 6.7. Shear wall (SW3) deformed shape (a) showing the wall failure mechanism triggered by failure of 

the bottom fasteners, while the studs remain elastic even though P > Pn on the right chord stud (f, g). 
 

 
Fig. 6.8. Shear wall (SW2-c) deformed shape (a) showing the wall failure mechanism triggered by 

buckling of the compression chord stud, while fasteners exhibit low load and deformation demands. 
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Fig. 6.9. Fastener load-deformation responses in shear wall with elastic chord studs (SW3) show the 

bottom fasteners along the sides failing that results on the wall’s loss of strength. 
 

 
Fig. 6.10. Fastener load-deformation responses in shear wall with nonlinear studs (SW2-c) where fastener 

exhibit force and deformations below their prescribed strength. 
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6.6 Gravity load effects on the CFS shear wall response 

Gravity load effects on the shear wall monotonic response were explored for two 

different shear wall configurations listed in Table 6.1 as SW1 and SW2. The first wall model 

corresponds to the base model and the second is the modified version of the base model with 

thinner vertical studs (600S162-33). Gravity loading was simulated as point loads applied at the 

top end of each vertical member and corresponding to a percentage of the individual stud 

strength (i.e., P= 0.25Pn, 0.5Pn and 0.75Pn).  

The gravity load influence on the shear wall response is of interest since its effects added 

to the vertical forces developed in the studs due to lateral loads can trigger sooner local buckling 

and change the failure mechanism. For instance, in the case of the shear wall base model (SW1) 

when the gravity load is increased, an expected reduction on the maximum strength is observed 

as well as decrement on the wall deformation at which point softening of the response occurs 

(see Fig. 6.11a). However, for the higher gravity load values (0.5 and 0.75) the failure 

mechanism involves some amount of local buckling developed in the infill stud after the 

fasteners on the compression side edge had failed. The influence of local buckling in the 

described case is small and plays a roll only after the fasteners have failed and for gravity loads 

close to the strength of the vertical members. 

In the case of the shear wall with thinner studs (SW2), the effects of the gravity load is 

more pronounced. Local buckling affects the failure mechanism even for the low gravity load 

case (0.25Pn) where the fastener failure along the right edge and buckling at the bottom of the 

right stud happens almost simultaneously (see Fig. 6.12 and 6.13 ). Because the stud can still 

carry load the wall response shows a lower plateau (see Fig. 6.11b) where more fasteners fails 

until either buckling of the stud happens (e.g., case of 0.5Pn) or all fastener have failed. As the 

gravity load applied is increased local buckling governs the failure mechanism and fasteners 

remain at low deformations and force demands and the post-peak plateau is not developed. 

An additional effect observed of the gravity loads on the shear wall lateral response is an 

increase of the initial stiffness of the wall. For instance, in shear walls where the failure 

mechanism is mainly driven by fastener failure like in the base model case (SW1), the initial 

lateral stiffness of the wall increases about 50% as shown in Fig. 6.11a. There is a similar 

increase on the initial stiffness as well (25% to 48%) in the case of the shear wall SW2 where 

local buckling is driving the failure mechanism (Fig. 6.11b). This increase of the initial stiffness 
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for example was not captured in the shear wall test described in [12] as gravity load was not 

applied. While other few studies (e.g., [3]) have considered gravity load effects on the lateral 

response of CFS shear walls, the amount of testing needed to evaluate the effects of gravity load 

in a reliable way would be expensive. In this case, having the capability offered by the proposed 

analysis framework including the nonlinear behavior of the framing members would be of 

benefit. 

 
Fig. 6.11. Effects of gravity load on the shear wall lateral force-deformation response for (a) the base 

model SW1, and (b) the modified shear wall with thinner vertical members SW2. 
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Fig. 6.12. Shear wall (SW2-b) deformed shape (a) showing fastener failure and local buckling and in the 
compression chord stud happening almost simultaneously when the wall reaching its maximum strength. 

 
Fig. 6.13. Fastener load-deformation responses in shear wall SW2-b where fasteners failure and local 

buckling of the compression chord stud happen almost simultaneously. 
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6.7 Member slenderness effects on the CFS shear wall response 

To evaluate the sensitivity of the shear wall response to the vertical member cross-section 

slenderness λℓ. The vertical member cross-section slenderness is set to five different values in the 

interval 1.0 to 2.5 while keeping the remaining properties (i.e., thickness, area and inertia) 

unchanged from the base model SW1. The asymPinching model is used to model the cross-

section behavior including local buckling. Because the thickness of the members is kept constant 

the properties for the fastened connection are the same as those in the base model SW1. Two 

gravity loading scenarios are considered, in the first one (SW5-a to SW9-a) the applied load 

corresponds to a 50% of the predicted stud strength Pn, while in the second scenario (SW5-b to 

SW8-b) the applied load is the same, P = 27.5kN, for all shear walls modeled. This last value of 

axial load corresponds to the 50% of the predicted strength Pn of the more slender stud 

considered in this example, i.e., members in wall SW9-a (see Table 6.1). 

The monotonic responses for the first gravity load scenario (P =0.5Pn) in Fig. 6.14a show 

that the failure mechanism is triggered by local buckling of the compression chord stud except in 

wall SW5-a. For this wall failure is fastener driven where the studs remain practically elastic (see 

Fig. 6.15) resulting in smooth softening branch of the response. The axial load developed in the 

studs from lateral loading added to the 0.5Pn initial load takes the studs beyond the deformation 

corresponding to the peak strength, e.g., see Fig. 6.16 and 6.17. This reflects as discussed 

previously in the abrupt drop in wall strength of the wall shown in the pushover curves in Fig. 

8.13a. Development of a plateau after the peak strength for the first gravity loading scenario is 

not possible for walls SW6-a to SW9-a because of the buckled compression chord. 

In the second gravity loading scenario, the pushover responses of the walls show similar 

behavior to the previous case where buckling of the compression chord stud leads to an abrupt 

drop in the wall strength (see Fig. 6.14b). However, because the initial load in this scenario is set 

to be the same for all walls and smaller than 0.5Pn, each wall can sustain much larger 

deformations compared to the first gravity loading scenario. For example, the deformation at 

peak load for the SW7-b wall is 40mm, 70% more than the deformation at peak (24mm) 

experienced by wall SW7-a. Failure of the wall is triggered when the total axial load acting 

compression chord stud reaches Pn and buckling occurs. In the case of walls SW5-b and SW6-b, 

the response is almost identical because the initial gravity load is small enough that the studs in 

both cases remain practically elastic and wall failure is fastener driven. In two of the wall 
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analyzed (SW7-b and SW8-b) a post-peak increase in strength is observed that corresponds to 

fasteners reloading after they first unloaded when buckling of the stud occurred. 

Summarizing, the effects of slenderness are more noticeable as the initial gravity load 

acting on the wall increases such that added to the axial loads developed from lateral loading get 

closer to the vertical member strength. In this case the failure mechanism changes from the 

smooth fastener driven mechanism to a more abrupt failure mechanism triggered by local 

buckling of the studs. 

 

 
Fig. 6.14. Shear wall response sensitivity to the vertical member cross-section slenderness. 
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Fig. 6.15. Shear wall (SW5-a) deformed shape (a) showing fastener failure along the edges and studs 

remain elastic and always in compression. 
 

 
Fig. 6.16. Shear wall (SW7-a) deformed shape (a) showing the wall failure mechanism triggered by local 
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buckling of the compression chord stud, while fasteners have low load and deformation demands. 
 

 
Fig. 6.17. Shear wall (SW9-a) deformed shape (a) showing the wall failure mechanism triggered by local 

buckling of the compression chord stud followed by buckling in the infill stud. 

 
Fig. 6.18. Fastener load-deformation responses in shear wall with less slender studs (SW5-a) where 
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bottom fasteners along the sides fail, while the studs remain elastic. 
 

 
Fig. 6.19. Fastener load-deformation responses in shear wall (SW7-a) where failure is triggered by 

buckling in the compression chord stud while the other vertical members remain elastic. 
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Fig. 6.20. Fastener load-deformation responses in shear wall with slender studs (SW9-a) where failure is 

triggered by buckling in the compression stud and infill stud reaches loads close to its strength Pn. 
 

6.8 Shear wall cyclic response 

Shear wall cyclic responses were obtained to investigate the influence of gravity load and 

sensitivity to the vertical member cross-section slenderness λℓ. The resulting responses exhibit 

similar characteristics to the pushover responses previously described. Thus, increasing initial 

gravity loading acting on the wall reflects in a decrement of the cyclic envelope and increase of 

the initial lateral stiffness similar to that observed from the pushover responses, see Fig. 6.21a. 

The failure mechanism exhibited depends as well on the slenderness and magnitude of the 

applied initial gravity loads. Fig. 6.22 shows the typical response for a wall (SW1-c) where the 

failure mechanism is fastener driven, and the forces in the vertical studs remain elastic. Fig. 6.23 

shows each fastener force-deformation response for the same wall (SW1-c) where it is seen the 

edge fasteners are the first ones to fail. 

For the case of changing the vertical member cross-section slenderness effects, the 

responses also exhibit the same type of behavior than the corresponding pushover responses, see 

Fig. 6.21b. The failure mechanism is as well similar to the one observed for the pushover 
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analysis, and it varies from fastener driven to chord stud buckling triggered depending on the 

vertical members slenderness. For example Fig. 6.24 shows the response for wall SW7-b, where 

akin its monotonic response shows buckling in the chord studs. In this case most fasteners 

connecting the lower OSB panel experience force demands close to the fastener maximum 

strength, see Fig. 6.25. 

In all cyclic responses obtained, vertical members do not experience large nonlinear 

cycles and therefore cyclic strength and stiffness degradation in this members and their effect on 

the overall shear wall response is minimal. This result is a consequence of the specific nature of 

the structural system analyzed where chord stud buckling immediately renders instability. If the 

analysis were included for example in the context of a whole building analysis where the wall 

were connected to other elements and redistribution is possible, then more dissipation from the 

chord studs could be expected. Additionally, the parameters used in this study to define the 

fastener behavior model do not include strength and/or stiffness cyclic degradation. It is expected 

that including these two phenomena would result in additional degradation especially for those 

walls where the failure mechanism is fastener driven. 

 

 

Fig. 6.21. Cyclic response for the shear wall SW1 (a) shows the reduction on the strength envelope 
because of increasing initial gravity loads, and (b) shows the shear wall response sensitivity to the vertical 

member cross-section slenderness (SW5b-9b). 
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Fig. 6.22. Shear wall (SW1-c) deformed shape from cyclic loading (a) showing fastener failure along the 

edges and (b) studs remain elastic.  
 

 
Fig. 6.23. Fastener cyclic responses in shear wall (SW7-b) where edge fasteners fail,  

while the studs remain elastic 
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Fig. 6.24. Shear wall (SW7-b) deformed shape from cyclic loading (a) showing the wall failure 

mechanism triggered by local buckling of the chord studs. 
 

 
Fig. 6.25. Fastener load-deformation responses in shear wall (SW7-b)  

where failure is triggered by buckling in the chord studs. 
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6.9 High-fidelity shear wall simulation model in ABAQUS 

In this section, the shear wall in Fig. 6.3 is modeled using thin-shell finite elements for 

framing members and the UEL proposed in Chapter 5 to simulate the member-to-sheathing 

screw-fastened connections. Simulations are carried out using a modified model based on the 

work by Ngo [96] as shown in Fig. 6.29. The wall dimension is 4 ft. by 9 ft. Only front sheathing 

(OSB) is installed and there is no gypsum sheathing. The rating of the OSB sheathing is APA 

24/16 Exposure 1. The thickness is 7/16 in. The cold-formed steel frames consist of five studs, 

two tracks and one ledger. The dimension of studs is 600S162-54 mil (50 ksi). The dimension of 

track is 600T150-54 mil (50 ksi). The dimension of ledger is 1200T200-97 mil (50 ksi). Studs 

are fastened by #10 Hex head washer back to back on the left and right side of the shear wall to 

form the chord studs. The tracks are fastened to studs by #10x3/4 in. flat head screws. The OSB 

are connected to CFS members by #8x1-15/16 in. flat head. Fastener spacing is 6 in. There is a 

seam existing between the two OSB sheathing boards. However, for simplicity, the seam and 

fastener connecting steel strap to OSB sheathing boards are not modeled.  

 

 
Fig. 6.26. Shear wall numerical ABAQUS model [96] 
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6.9.1 OSB sheathing modeling 

The S4R shell element in ABAQUS is used to model the 11mm (7/16in.) thick OSB 

sheathing boards. The original model created by Ngo [xx] assumes OSB sheathing as rigid 

diagrams by assuming very large modulus of elasticity to OSB material. To consider flexural and 

shear deformation of OSB sheathing board, the OSB material is modified based on reported 

panel strength values from APA Panel Design Specification [98]. Elastic Young modulus and 

shear modulus are back calculated using Eq. respectively from the APA reported values as 

suggested in [97].  

3/12 ww tEIE =  6.1 

ww tEtG /=  6.2 
 

OSB is an orthotropic material and the APA Panel Design Specification [98] considers 

this by specifying panel strength in the direction parallel to the strength axis and perpendicular to 

the strength axis. The panel strengths considered in this study are listed in Table 6.4 as flexure 

and shear rigidities. By converting panel rigidity to modulus of elasticity, orthotropic OSB 

material parameters can be determined. 

Table 6.4. OSB Panel flexural and shear rigidity 
Plate bending stiffness  

(strength axis) 
Plate bending stiffness  

(non-strength axis) 
Shear rigidity 

(through thickness) 
E1Iw E2Iw Gv1tv  

(lbf-in.2/ft.) (lbf-in.2/ft.) (lbf/in.) 
78000 16000 83500 

 
Table 6.5. Converted OSB material modulus of elasticity 

Modulus of elasticity  
(strength axis) 

Modulus of elasticity  
(non-strength axis) 

Shear modulus  
(through thickness) 

E1 E2 G12 
(ksi) (ksi) (ksi) 
1068 219 200 

 

For orthotropic elastic material definition in ABAQUS, modulus of elasticity parameters 

and Poisson’s ratio in 3-dimensions are required. The flexural modulus in the direction normal to 

the wall plane is not important in this analysis. The flexural modulus E3 is assumed to be equal to 

E2 as 219 ksi. Because out-of-plane shear deformation is not significant in shear wall analysis, 

the shear modulus corresponding to out-of-plane direction is taken to be the same as in-plane. 

Therefore, G13 is set be to 200 ksi. Poisson’s ratio in all directions are taken as 0.30. 
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6.9.2 CFS members modeling 

CFS members (i.e., studs, tracks and ledger) are Modeled using S4R thin-shell elements. 

A fine meshing is used for CFS members to capture better the thin-walled behavior. The steel 

material is modeled with isotropic hardening. The choice of plastic or elastic material model has 

little effect on general shear wall load-deformation response. However, it affects simulation of 

CFS members’ torsion and buckling behaviors. With elastic material model, it is found that 

unreasonably high stress concentration will occur at the bottom track close to hold-downs and 

anchor bolts. Comparison is made between monotonic shear wall analysis with elastic steel 

material in Fig. 6.27 and one with plastic material in Fig. 6.28. 

 

 
Fig. 6.27. Stress distribution in bottom track at maximum wall deformation using elastic steel material  

 

 
Fig. 6.28. Stress distribution in bottom track at maximum wall deformation using plastic steel material  
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Therefore, it is recommend herein that plastic material model should be used to model 

cold-formed steel instead of only using elastic model. The steel elastic properties are 29,500 ksi 

(Young’s modulus) and 0.3 (Poisson’s Ratio). The isotropic hardening parameters are taken from 

the work by Moen [47].  

Table 6.6. Isotropic hardening parameters 
Plastic Strain Stress 

 ksi 
0 55.1 

0.003 60.3 
0.008 64.9 
0.013 68.4 
0.023 74 
0.033 78.1 
0.043 81.3 
0.053 83.8 
0.063 86.2 

 

6.9.3 Fastened connections modeling 

There are mainly two types of screw-fastened connections in the shear wall modeled 

here, steel-to-steel and steel-to-OSB. Steel-to-steel connections are relatively “rigid” compared 

to steel-to-OSB connections. From experiments, rarely were any steel-to-steel connections found 

to have failed. There, multi-point constraint pin type (MPC PIN) is used to simulate steel-to-steel 

connections.  

The UEL proposed in Chapter 5 is used to model steel-to-OSB connections. The 

configuration of these connections is 54 mils to 7/16’’ OSB. Calibrated Pinching4 model 

parameters from [95] are assigned to the UEL so that connection nonlinearity can be simulated. 

In order to consider changes in displacement trajectory, the radial spring model is used for the 

UEL. The distance between CFS node and OSB node is set to be 0.2373’’ equal to the distance 

between CFS and OSB centerlines.  

6.10 Pushover analysis in ABAQUS 

6.10.1 Influence of analysis procedures 

The cold-formed steel frame shear model modeled in this section was already tested in an 

experiment. It was found that the shear wall displayed a “brittle” loss of capacity after reaching 

its peak load (Fig. 6.29). Such sudden loss of capacity presents potential challenge for numerical 

analysis. In some cases, default Newton-Raphson method in ABAQUS may not be able to 
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capture post-peak response of shear walls. In order to find a reliable solution procedure, several 

analysis procedure options are explored in this section. Their results are compared and discussed. 

 
Fig. 6.29. Load-deformation response of shear wall under monotonic loading 

 

The solution techniques applied are Newton-Raphson method, Riks method and implicit 

dynamic method. The Newton-Raphson method is the default nonlinear solution technique in 

ABAQUS/Standard. It needs the inverse Jacobian matrix in every iteration to calculate 

incremental displacement correction, which makes it sometimes numerically expensive for 

obtaining solution. It is an effective and accurate analysis procedure for most of problems. 

However, for problems tracing scenarios of unstable collapse or post-buckling, Newton-Raphson 

method sometimes fails to converge. For these problems, Riks method can be more reliable, 

especially for cases with geometric nonlinear collapse. Riks method iterates by the use of “arc 

length”. Both displacement and load are unknown variables to be solved. However, because of 

the way that Riks method is formulated, it cannot be used for cyclic analysis.  

The implicit dynamic analysis is also investigated here. Even though implicit dynamic 

method stills uses Newton-Raphson method, it considers damping and acceleration, which can 

potentially “dissipate” nodal residuals and improve convergence. The study also demonstrates 
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the UEL’s potential for dynamic analysis. The solution procedure and time increment input are 

based on the work done by Moen [47].  

For implicit dynamic analysis, material mass is applied to cold-formed steel and OSB 

sheathing based on real material density. The UEL is only assigned with the mass of a fastener. 

Rayleigh mass proportional damping with α equal to 0.005 is assigned for energy dissipation. 

The loading rate is taken as 0.00004 in./sec to minimize inertia effects. 

The cold-formed steel shear wall model introduced in this chapter is analyzed in 

ABAQUS using Newton-Raphson method, Riks method and implicit dynamic analysis. The 

shear wall load-deformation curves are shown in the Fig. 6.30. The results from three different 

analysis methods are compared. The horizontal axis “Displacement” corresponds to the drift at 

the top the shear wall. The vertical axis “Load” corresponds to the shear wall base shear.  

 
Fig. 6.30. Comparison of numerical analysis results using different solution procedures 

 

All of the three analysis methods succeed in capturing post-peak response and eventually 

converge. As shown in the Fig. 6.30, the three analysis procedures predict basically the same 

peak load and corresponding displacement. Prior to reaching the peak load, same shear wall 

response is calculated by the three methods. After reaching the peak load, there is minimal 
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difference between Newton-Raphson static method and Riks method. Implicit dynamic method 

creates slightly different post-peak behaviors with lower post-peak load immediately after loss of 

capacity. However, it gradually catches up with load-deformation paths of the other two 

methods. This means that the difference might be caused by acceleration induced by the “sharp” 

capacity loss since this difference is eventually dissipated.  

From this comparison, it can be shown that Newton-Raphson method is sufficient for 

obtaining converged solution for shear wall pushover analysis. But for the case when Newton-

Raphson method fails to converge, Riks method and implicit dynamic method are available.  

6.10.2 Comparison to experiment 

Shear wall numerical analysis result is compared to experiment in this section. In this 

analysis, radial spring model is selected for simulating screw-fastened connections and Newton-

Raphson method is used for obtaining solution. The steel-to-sheathing connection Pinching4 

parameters are taken from work by Padilla-Llano [99]. These Pinching4 parameters are shown in 

Table 6.7 and Table 6.8. 

Table 6.7. Steel-to-sheathing Pinching4 backbone parameters  
ePd1 ePd2 ePd3 ePd4 ePf1 ePf2 ePf3 ePf4 

(in.) (kip.) 
0.022 0.124 0.462 0.815 0.192 0.384 0.5 0.049 
ePd1 ePd2 ePd3 ePd4 ePf1 ePf2 ePf3 ePf4 

(in.) (kip.) 
-0.022 -0.124 -0.462 -0.815 -0.192 -0.384 -0.5 -0.049 

 

Table 6.8. Steel-to-sheathing Pinching4 pinching path parameters 
rDispP rForceP uForceP rDispN rForceN uForceN 

0.42 0.01 0.001 0.42 0.01 0.001 
 

The load-deformation curve of numerical analysis in comparison to experiment result is 

shown in Fig. 6.31. The numerical analysis gives very accurate prediction of shear wall response 

with slight inelasticity as shown in the first and second “legs” of the curve. However, the shear 

wall stiffness is underestimated after the shear wall enters severe softening state as shown in the 

third “leg”. Regardless of the discrepancy caused by underestimated stiffness, the predicted post-

peak response closely resembles experiment result.  
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Fig. 6.31. Comparison of numerical analysis result to experiment 

 

According to experiment data, the response of cold-formed steel frame shear wall under 

monotonic loading is controlled by screw-fastened connection failures where sequential 

connection failures lead to gradual softening of shear wall response until the number of failed 

connections is enough to lead to shear wall failure. Therefore, the input for connection Pinching4 

parameters is critical for obtaining correct simulation. Curves of connection force with respect to 

shear wall lateral displacement are created in Appendix C. It is found that the initiation and end 

of three pre-peak legs in these curves correspond to the three legs in the shear wall load-

deformation curve. Thus, the third leg of connection Pinching4 backbone might be 

inappropriately chosen, which results into the difference between experiment results and 

numerical analysis. More study on single screw-fastened connection may need to be done in 

order to obtain closer simulation result.  

The shear wall general deformed shear wall is shown in the Fig. 6.32. The shear wall as a 

whole deforms as a deep beam. The cold-formed steel frames is deformed as a parallelogram 

with slight bending. Torsion occurs on the middle stud as shown in Fig. 6.34, which is induced 

by fasteners connecting studs only on one side. The top portion of the cold-formed steel studs 

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Lateral deformation (in.)

B
as

e 
sh

ea
r (

ki
p)

 

 
Experiment
ABAQUS



 

102 

experience relatively high stress. This is possibly due the restraint created the ledger. The highest 

stress concentration on cold-formed steel studs occur at the hold-down areas, where steel around 

track-to-stud connections have entered hardening stage (Fig. 6.35). The OSB sheathing is found 

to rotate relative the cold-formed steel frame as shown in Fig. 6.36. It experiences much lower 

stress compared to cold-formed steel.   

 

 
Fig. 6.32. Shear wall general deformed shape at maximum shear wall displacement 

 

 
Fig. 6.33. Shear wall top track and ledger area Von Mises stress distribution at maximum shear wall 

displacement 
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Fig. 6.34. Torsion of cold-formed steel studs of the shear wall at maximum lateral deformation 

 

 
Fig. 6.35. Shear wall bottom track and stud stress distribution at maximum shear wall deformation 

 

 
Fig. 6.36. Rotation of OSB sheathing at the maximum shear wall displacement 
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In terms of connection behavior, as shown in Fig. 6.37, the connections with distinctive 

failures during testing are labeled. Most of connection failures occurred at the bottom of the 

shear wall. Almost all track-to-sheathing connections failure by sheathing pull-through failure. 

Failures of stud-to-sheathing connections are mostly located at the stud lower part close to hold-

downs. However, more connections failed on the right side than the left side. This might be 

explained by the difference between hold-down tension and compression stiffness.  

 
Fig. 6.37. Distribution of failed connections on the shear wall during testing [96] 

 

The Fig. 6.38, Fig. 6.39 and Fig. 6.40 are created showing respectively the response of 

the damaged connections on the left side, right side and the bottom. It can be seen that all 

connections shown here have been loaded past their strength, which agrees with experiment 

observation. However, connections post-peak behaviors are very different. Many connections on 

the left and bottom undergoes unloading after reaching peak load, while the right side 

connections continue being loaded along the backbone curves. This phenomenon may be caused 

by the difference of hold-down stiffness in compression and tension.  
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Fig. 6.38. Load-deformation response of the connections on the left stud bottom 

 
Fig. 6.39. Load-deformation response of the connections on the right stud bottom 
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Fig. 6.40. Load-deformation response of the connections on the bottom track 

 

6.11 Cyclic analysis in ABAQUS 

6.11.1.1 Fastener-only model study 

Compared to pushover analysis, loading and unloading in cyclic analysis adds more 

numerical difficulty for convergence. In order to settle on robust modeling technique, a fastener-

only model (Fig. 6.41) is created by modifying original high-fidelity shear wall discussed in the 

last section. All the shell elements from the original shear wall model are discarded leaving only 

the screw-fastened connections modeled by the UEL. Rigid diaphragm assumption is assigned to 

the UEL nodes originally connected to sheathing shell elements. The other nodes on UEL are 

pinned to the ground. Cyclic displacement loading is prescribed on the reference node the top of 

the rigid diaphragm. The cyclic loading protocol used in Chapter 5 is applied here with scale 

factor of 1.5. Under the cyclic displacement loading, the UEL will experience relative 

displacement between its two nodes and then establish resistance. Instead of trying to simplify 

original shear wall model, this fastener-only model is intended to mimic the relative 

displacement between CFS members and OSB sheathing which is the deformation of the UEL.  
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It is found that the model quickly divergences after two cycles when some fasteners enter 

inelastic state. The reason for this divergence is that change in stiffness of fasteners causes 

reestablishment of fastener orientation. Orientation reestablishment sometimes leads to change in 

element deformation. For radial spring model, the spring orientation is updated in each iteration. 

Combined with nonlinear model, the spring orientation can oscillate by a large amount and 

thusly create a cycle of reloading and unloading in one increment. This possibly contributes to 

divergence.  

In order to solve the divergence issue, the element formulation in the original UEL is 

modified. Instead of being a zero length element free to rotate its orientation, the element 

orientation is “locked” in the prescribed direction. The direction is determined based on the 

orientation that element establish in elastic state. The spring orientation “locking” only occurs 

after connection begins yielding corresponding to Pinching4 backbone after the first curve “leg”. 

This modification is based on the assumption that certain amount damage on the steel-to-

sheathing connection will create a deformation path on the sheathing. Connection displacement 

along this deformation path has the lowest potential energy. Thus, any connection displacement 

is assumed to follow this deformation path. In summary, before connection begins yielding, the 

spring remains radial spring capable of rotating its orientation. After the connection begins 

yielding, the spring “locks” its orientation and changes into modified radial spring. Still only 

spring is used in order to avoid overestimation of strength and stiffness. It is assumed that screw 

during testing is relatively “locked” along the sheathing damaged trajectory. With this 

modification, the fastener-models can converge. The fastener-only model response is shown in 

Fig. 6.42. It can be seen that the fastener-model result shows clear resemblance to fastener 

hysteretic response. Both peak load and pinching are simulated in this model.  
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Fig. 6.41. Fastener-only model 

 

 
Fig. 6.42. Hysteretic response of fastener-only model 
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Fig. 6.43. Hysteretic response of one fastener in fastener-only model 

 

 

6.11.2 High-fidelity model 

With the convergent solution obtained in the fastener-only model, the high-fidelity shear 

wall model analyzed monotonically is assigned with cyclic displacement loading. Still, the 

modified UEL is used for analysis. Newton-Raphson method is used for obtaining the solution.  
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Fig. 6.44. Cyclic response of high-fidelity shear wall model 

 

Shear wall cyclic response shows a nonlinear backbone and pinching. It can be seen that 

the shear wall cyclic response highly resembles the hysteretic behavior of individual fasteners. 

Because the shear wall hysteretic response is actually the combination of all individual fastener 

responses, the shear wall load-deformation curve is smoother than fastener. The response of one 

of the connections on the top track is shown in the Fig. 6.45.  
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Fig. 6.45. Hysteretic response of one screw-fastened connection 

 

Before the shear wall reaches its peak load, the total shear wall stiffness and strength is 

mostly provided by the steel-to-sheathing connections. As shown in Fig. 6.46, at shear wall peak 

load, there is no significant deformation on the CFS framing members except high stress 

concentration around hold-downs. The CFS steel frame is deformed as parallelogram providing 

little strength and stiffness. However, after most steel-to-sheathing connections fails, the lateral 

rigidity from OSB sheathing cannot be provided. In this condition, the CFS frame begins to resist 

the lateral displacement. This changes the failure mechanism. CFS frame in this period 

experiences very large deformation. The studs on the compression side experiences flexural-

torsional buckling as shown in Fig. 6.47. Since steel-to-sheathing connections have already 

failed, the studs become unbraced along its full length making them susceptible to global 

buckling. Overall, this  
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Fig. 6.46. Deformed shape of the shear wall at the maximum load 

 
Fig. 6.47. Deformed shape of the shear wall at the maximum displacement 

 

6.12 Conclusions 

In this chapter a computationally efficient component based simulation framework for 

cold-formed steel structures that captures the nonlinear behavior in all critical components was 

introduced. Cold-formed shear walls were simulated and discussed to illustrate the use of the 

framework and its advantages. Nonlinear behavior in critical components was included using the 

asymPinching model developed in Chapter 4 for framing members, and Pinching4 for screw-

fastened connections. The capability of the framework to easily modify the geometry or material 

properties allows exploring different loading scenarios as it was demonstrated by the small study 

on the shear wall behavior discussed. The results from the shear wall study highlighted the need 

to include local buckling behavior when analyzing structural systems with thin-walled members. 
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Including local buckling and any other nonlinear behavior can reveal additional limit states and 

failure mechanisms that may go unnoticed if not included.  

The introduction of the user element from Chapter 5 in the simulations using thin-shell 

finite elements in ABAQUS permitted simulating shear wall responses while including explicitly 

the thin-walled behavior in the framing members and sheathing. The inclusion of this UEL 

would allow designers to include fastener behavior where properties can easily be derived from 

common screw-fastened connection tests.  
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Chapter 7: Conclusions and Future Work 
 

7.1 Conclusions 

A computationally efficient component-based framework for the analysis of light-framed 

steel structures was introduced. The framework is supported by nonlinear hysteretic models that 

capture thin-walled behavior in framing members and nonlinear behavior in screw-fastened 

connections. Models needed for the framework were calibrated from cyclic tests conducted at 

Virginia Tech.  

Finite element analyses using ABAQUS were performed to explore cyclic behavior and 

energy dissipation mechanisms in thin steel plates. Energy dissipation in thin-plates occurs 

through accumulation of plastic deformations at localized damaged zones that coincide with the 

leading buckling half-wave. The shape of the initial imperfections influenced where these 

damaged zones occurred. This study provided insight into the cyclic behavior and energy 

dissipation in thin-walled cross-section elements, such as webs and stiffened elements. 

A framework to include thin-walled behavior into the modeling of framing axial and 

flexural steel members was introduced. This framework consisted of a hysteretic model that 

captures the nonlinear behavior including thin-walled behavior attached to a nonlinear beam 

column or spring element. The results from the experimental program were used to develop the 

hysteretic model parameters including backbone curves, strength degradation, and stiffness 

degradation for each of the tests. This set of parameters were used to illustrate the approach to 

model thin walled behavior in steel axial and flexural members using beam-column elements and 

hysteretic springs. 

The framework for modeling thin-walled behavior in steel members was then specialized 

into the hysteretic model, asymPinching for simulating steel columns cyclic behavior including 

local buckling. General expressions were develop for backbones, total energy dissipation 

capability, strength degradation and stiffness degradation as a function of the member local 

slenderness λℓ. These expressions were developed from monotonic and cyclic responses obtained 

through nonlinear finite element simulations in ABAQUS of cold-formed steel columns which 

strength predicted by AISI-S100-12 [22] is govern by local buckling. The set of columns 

simulated covered a wide interval of cross-section local slenderness from stocky to slender thin-
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walled cross-sections (λℓ from 0.69 to 3.39). Initial imperfections simulated using a 1D spectral 

approach were included, as well as steel plasticity implemented using combined nonlinear 

isotropic-kinematic hardening. Steel damage initiation and evolution was also included to 

simulate the effects of material deterioration due to cold-bending and fracture. The nonlinear 

finite element modeling protocol was validated against the cyclic responses obtained 

experimentally.  

Even though the proposed methodology is established for thin-walled cold-formed steel 

members, the asymPinching model parameters are presented generally as a function of local 

buckling slenderness λℓ and could be extended to hot-rolled steel members and cross-sections 

with future validation. The same methodology could be applied to thin-walled cold-formed steel 

members that experience distortional and global buckling with further validation. Moreover, the 

asymPinching model can be applied to any material, component or subassembly that exhibits 

asymmetric pinched hysteretic behavior. 

A computationally efficient component based simulation framework for cold-formed 

steel structures that captures the nonlinear behavior in all critical components was introduced. 

The framework includes the asymPinching to model thin-walled behavior in framing members 

and allows to consider different loading scenarios and changes in geometries in the analyzed 

structural system. An illustrative example highlighted the need to include local buckling 

behavior and any other nonlinear behavior in components when analyzing structural systems 

with thin walled members as it can reveal additional limit states and failure mechanisms that may 

go unnoticed if these are not included.  

 

7.2 Future research topics  

The following are research topics that are identified as needed to advance the framework 

for CFS structures. 

Computationally efficient models for components and structures: 

Efficient models to simulate the behavior of members and connections are needed to 

advance performance analysis based engineering of light-framed steel structures. Additional 

work to further advance the modeling approach described in this dissertation to include thin 

walled behavior in modeling members is warranted. Similarly, there is need for efficient models 
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to simulate the typical connections in a light-framed steel structure. The following list 

summarizes ideas for future research needed on this topic: 

• Complete the modeling framework for thin-walled axial members: The framework presented 

in Chapter 4 to simulate the cyclic behavior including local buckling in axial members needs 

to be expanded to include the other buckling limit states considered in AISI-S100-12 [22]. 

Plans are set to developed expressions as a function of slenderness for distortional and global 

buckling limit states to be used with the asymPinching model. 

• Sensitivity analysis and validation of the modeling framework for thin-walled members: A 

sensitivity analysis and validation of the expressions in Chapter 4 is needed. The sensitivity 

analysis and validation should focus in checking the approach for different cold-formed steel 

cross-section shapes and possibly hot-rolled steel cross sections.  

• Develop general expressions for CFS flexural member hysteretic models: To complete the 

framework it is necessary to develop expressions for CFS flexural members like the ones 

described in Chapter 4. The expressions can be set as functions of the member slenderness 

for local, distortional and global buckling. 

• Screw-fastened connection models: General expressions to define the hysteretic model based 

on fastener and connected parts properties is needed. Currently research is underway to 

define this parameters. 

• A comprehensive beam-column model for thin-walled members: The approach described in 

Chapter 3 to model cyclic response including thin-walled behavior presents some 

shortcomings the most relevant being interaction and localization. Axial load-moment 

interaction which is one important load case for members that are part of the lateral-load 

resisting system in CFS structures is not included. Localization of the damage as it was 

observed in the tests and finite element analysis is also not included because of the beam-

column element used in this dissertation.  

A comprehensive element model for thin-walled members that can model thin wall behavior 

is needed. In addition to interaction, the model should capture the buckling phenomena with 

localization of deformations for most member loading cases, as well as material plasticity 

and fracture. These element model should be computationally more efficient than a thin-shell 

finite element model of the member but comparatively accurate. Parameters in the form of 
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those presented in Chapter 4 can be developed.  

• Validation of the analysis framework through high-end finite element analysis or 

experiments: The analysis framework described in Chapter 6 needs further validation by 

comparing simulated responses using the framework to experimental responses of shear 

walls or other CFS systems. In addition to experimental responses, high-end finite 

simulations (e.g., thin-shell finite element analysis in ABAQUS) can be used for validation. 

 
Assessment and performance factor quantification for CFS structures: 

As mentioned in the introduction of this dissertation, there is an ongoing effort to 

advance performance based analysis and design of cold-formed steel structures. The simulation 

framework and models introduced in this dissertation can be used to quantify seismic 

performance factors R, Ω0 and Cd for cold-formed steel structures and assemblies following the 

FEMA P695 approach [2]. Also the framework can be used in seismic performance assessment 

of CFS buildings using the FEMA P58 methodology [86]. 
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Appendix A  Displacement-Controlled Protocol for Cyclic 
Testing of Cold-Formed Steel Members 

 

Cyclic loading protocols attempt to experimentally simulate deformation demands, 

cumulative deformation, and the number of inelastic cycles a system (or component) might 

endure during a design level seismic event [A.1]. The peak axial displacement demand, 

cumulative displacement demand, and number of inelastic cycles in a particular cold-formed 

steel member depends on many factors such as the location of the member in the building (e.g., 

chord studs in a shear wall experience larger axial deformation demands than studs in a typical 

partition wall), end fixity/constraints (i.e., connections may not fully transfer tension, 

compression, or moments to the member), bracing conditions, the building’s dynamic properties 

(elastic and nonlinear), and ground motion properties (which can vary depending source 

characteristics, distance to fault, site characteristics, etc.). Because of the inherent challenges 

associated with predicting demands on specific CFS members, the displacement-controlled 

testing protocol adopted here instead focuses on the progression of damage limit states in the 

member rather than reproducing seismic demands for a specific member configuration. 

The loading protocol in Fig. 7.1 was adapted from the FEMA 461 quasi-static cyclic 

deformation-controlled testing protocol. The FEMA 461 protocol was developed to obtain 

fragility data and hysteretic response characteristics of building components for which damage is 

best predicted by imposed deformations [A.2]. Cold-formed steel members can experience 

symmetrical or asymmetrical loading depending on the end connections (e.g., screwed or welded 

connection), bracing conditions, and location within a building system (e.g., floor joist compared 

to a stud in a shear wall). The adapted protocol is fully reversed with symmetric deformation 

amplitudes in both loading directions. Hysteretic models built based on the responses obtained 

from this protocol are expected to be capable of capturing the behavior under different loading 

patterns such as one-sided loading. 
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Fig. 7.1. Displacement-controlled testing protocol for cold-formed steel members. 

 

The FEMA 461 protocol is defined to reach a deformation associated with the most 

severe damage state at a preset point in the loading protocol, such as the 20th cycle. It is also 

suggested that at least six cycles should be completed prior to reaching the lowest damage state 

[A.2]. For cold-formed steel members the lowest damage state is assumed to occur when the 

member stiffness decreases due to buckling deformations. Hence, linear elastic behavior is 

expected before the corresponding deformation that leads to a reduction of the member initial 

stiffness. In the adapted protocol this linear behavior is expected to be comprised within the first 

six cycles (see Fig. 7.1).  

The protocol comprises steps of increasing amplitude with two cycles per step. The 

loading protocol comprises steps of increasing amplitude with two cycles per step. Each step’s 

displacement amplitude is 40% larger than the previous, i.e., δi = 1.4δi-1, see Fig. 7.1. The 

loading protocol is anchored to the elastic deformation δe at the fourth step (i.e., 7th and 8th 

cycles). The deformation δe is the deformation corresponding to the axial load Pe (axial 

members) or bending moment Me associated to with stiffness deterioration due to buckling 

deformations. The values for Pe and Me are estimated using slenderness limits defined in the 

AISI Direct Strength Method (DSM) [A.3].  

For CFS axial members, the DSM approach predicts that local buckling deformation 

initiates at λℓ=0.776 and the distortional buckling deformation initiates at λd=0.561. Calculating 

the slenderness λ=(Pe/Pcr)0.5, then Pe=0.60Pcrℓ and Pe=0.31Pcrd. The load where global buckling 
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deformation influences load-deformation response is assumed to be Pe=0.50Pcre. In the axial tests 

described in [77], the load Pe associated with stiffness deterioration from buckling deformations 

is given by Eq. A.1. 

For CFS flexural members, the DSM approach predicts that local buckling initiates at 

λℓ=0.776 and distortional buckling initiates at λd=0.673. Calculating the slenderness 

λ=(Me/Mcr)0.5, the moments associated with stiffness degradation from buckling deformations are 

Me=0.60Mcrℓ and Me=0.45Mcrd for local and distortional buckling respectively. The DSM 

approach estimates that global buckling deformations initiate at Me=0.36Mcre. In the flexural test 

described in [54], the bending moment Me associated with stiffness deterioration from buckling 

deformations is given by Eq. A.2. 

AELPee /=δ  A.1 

EIaLaM uee 6/)23( +=δ  A.2 
where E is the elastic modulus; A and I are respectively the member area and strong axis moment 

of inertia; Lu the constant moment span length; a is the shear span. 
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Appendix B  MATLAB Code for asymPinching Model 
 
The following MATLAB code illustrates the implementation of the tension-to-

compression unloading-reloading path definition for the asymPinching model described in 

Chapter 4. The variables in this code follow the same definitions in the original Pinching4 

model. A compiled version of the asymPinching model for OpenSees 2.4.5 can be downloaded 

from http://edcfs.blogspot.com/aTWSection. 

function [state3Strain,state3Stress] =  
getstate3mod(state3Strain,state3Stress,kunload,kElasticNegDamgd,lowTstateStrain,lowTstateStress, 
TminStrainDmnd, envlpNegStrain,envlpNegDamgdStress,hghTstateStrain,hghTstateStress,MDL) 
    %========================================================================== 
    % File Name: getstate3.m 
    % Description: Defines the tension-to-compression unloading path using  

%      trial strain and strain rate, especially for state 3.  
    % 
    %                          Padilla-Llano David (Dec 2014) - dapadill@vt.edu 
    %========================================================================== 
    kmax = max([kunload kElasticNegDamgd]); 
    TperElong = -(state3Stress(4) - kunload*state3Strain(4))/kunload; 
     
    if (state3Strain(1)*state3Strain(4) <0.0) % Trilinear unload reload path expected 
        % Calculate Point at 3:-> End of Unloading from Negative Quadrant 
        if (TminStrainDmnd < envlpNegStrain(4)) 
            state3Stress(3) = MDL.uForceN*envlpNegDamgdStress(5); 
        elseif (TminStrainDmnd < envlpNegStrain(3))  
            state3Stress(3) = MDL.uForceN*envlpNegDamgdStress(4); 
        else  
            state3Stress(3) = MDL.uForceN*envlpNegDamgdStress(3); 
        end 
         
        state3Strain(3) = hghTstateStrain + (-hghTstateStress + state3Stress(3))/kunload; 
         
        % Check Strain at 3 is not in front of Strain at 4 
        if (state3Strain(3) > state3Strain(4))  
            state3Strain(3) = state3Strain(4) + (state3Stress(3) - state3Stress(4))/kunload; 
        end 
         
        %%% Calculate Point at 2:-> Peak in the Unload-Reload path               
        if (MDL.uForceN == 0.0) 
            state3Stress(2) = lowTstateStress*MDL.rForceN; 
        elseif (MDL.rForceN-MDL.uForceN > 1e-8) 
            state3Stress(2) = lowTstateStress*MDL.rForceN; 
        else 
            if (TminStrainDmnd < envlpNegStrain(4)) 
                st1 = lowTstateStress*MDL.uForceN*(1.0+1e-6); 
                st2 = envlpNegDamgdStress(5)*(1.0+1e-6); 
                state3Stress(2) = min([st1 st2]); 
            elseif (TminStrainDmnd < envlpNegStrain(3))  
                st1 = lowTstateStress*MDL.uForceN*(1.0+1e-6); 
                st2 = envlpNegDamgdStress(4)*(1.0+1e-6); 
                state3Stress(2) = min([st1 st2]); 
            else 
                st1 = envlpNegDamgdStress(3)*MDL.uForceN*(1.0+1e-6); 
                st2 = envlpNegDamgdStress(5)*(1.0+1e-6); 
                state3Stress(2) = min([st1 st2]); 
            end 
        end 
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        % Check that Stress is less than the maximum stress from damaged backbone 
        if (state3Stress(2) < envlpNegDamgdStress(3)) 
            state3Stress(2) = envlpNegDamgdStress(3); 
        end 
                 
        state3Strain(2) = TperElong + envlpNegStrain(3)*MDL.rDispN; 
                 
        % Correct Strain at 2 if reload stiffness exceeds kunload or is negative  
        k23 = (state3Stress(2)-state3Stress(3))/(state3Strain(2)-state3Strain(3)); 
        k13 = (state3Stress(1)-state3Stress(3))/(state3Strain(1)-state3Strain(3)); 
         
        if ((state3Strain(2) > state3Strain(3))) 
            state3Strain(2) = state3Strain(3) + (state3Stress(2) - state3Stress(3))/kunload; 
        elseif (k23 > kunload) 
            state3Strain(2) = state3Strain(3) + (state3Stress(2) - state3Stress(3))/kunload; 
        elseif ( k23 < 0 ) 
            % Point 3 should be lower than Point 3 
            df = abs(state3Stress(3)/1000); 
            state3Stress(2) = state3Stress(3) - df;             
            if ( k23 < k13 ) 
                % pt 2 should be along a line between 1 and 3 
                du = state3Strain(1)-state3Strain(3); 
                df = state3Stress(1)-state3Stress(3); 
                state3Strain(2) = state3Strain(3) + 0.5*du; 
                state3Stress(2) = state3Stress(3) + 0.5*df; 
            end 
        end                 
    else 
        % linear unload reload path is expected       
        du = state3Strain(4)-state3Strain(1); 
        df = state3Stress(4)-state3Stress(1); 
        state3Strain(2) = state3Strain(1) + 0.33*du; 
        state3Strain(3) = state3Strain(1) + 0.67*du; 
        state3Stress(2) = state3Stress(1) + 0.33*df; 
        state3Stress(3) = state3Stress(1) + 0.67*df; 
    end 
     
    % checkslope and slope are local variables                    
    checkSlope = state3Stress(4)/state3Strain(4); 
    slope = 0.0;         
    % Final Check: Enforces monotonic Increasing Load-Response through 
    % State 4 if TperElong is zero 
    i = 1;       
    while (i<4)  
        du = state3Strain(i+1)-state3Strain(i); 
        df = state3Stress(i+1)-state3Stress(i); 
        if (du<0.0 || df<0.0) && (TperElong <= 0) 
            du = state3Strain(4)-state3Strain(1); 
            df = state3Stress(4)-state3Stress(1); 
            state3Strain(2) = state3Strain(1) + 0.33*du; 
            state3Strain(3) = state3Strain(1) + 0.67*du; 
            state3Stress(2) = state3Stress(1) + 0.33*df; 
            state3Stress(3) = state3Stress(1) + 0.67*df; 
            slope = df/du; 
            i = 4; 
        end 
        % If the slope from Start to End of State 4 is less than the slope 
        % from zero to point 1 of state4 then unload to zero and load 
        % linearly to point 4 of state4 
        if (slope > 1e-8 && slope < checkSlope)  
            state3Strain(2) = 0.0;  
            state3Stress(2) = 0.0; 
            state3Strain(3) = state3Strain(4)/2;  
            state3Stress(3) = state3Stress(4)/2; 
        end  
        i = i + 1;         
    end     
end 
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Appendix C  Connection Response in ABAQUS Pushover 
Analysis 

 
The following figures shows screw-fastened connection force with respect to shear wall 

lateral displacement. Only those that are reported to have failed during shear experiment are 

shown here. The Fig. C.2, Fig. C.3 and Fig. C.4 shows failed connections at different locations, 

namely left stud bottom, right stud bottom and bottom track. The dashed lines in the these figures 

labels the specific shear wall lateral displacement corresponding to the initiation and end of shear 

wall load-deformation curve “legs”.  

 
Fig. C.2. Force of left stud bottom connections a shear wall lateral displacement 
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Fig. C.3. Force of right stud bottom connections against shear wall lateral displacement 

 

 
Fig. C.4. Force of bottom track connections against shear wall lateral displacement 
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Appendix D  User Element FORTRAN Code for screw-
fastened connection simulation in ABAQUS 

 
The following is the FORTRAN code corresponding to the UEL subroutine for fastened 

connection simulation in ABAQUS. 
 
      SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS, 
     +     PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME, 
     +     KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF, 
     +     NPREDF,LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP, 
     +     PERIOD) 
C     ***************************************************************** 
      INCLUDE 'ABA_PARAM.INC' 
C 
      PARAMETER (TOL = 1.D-128, ZERO = 0.D0, PONE = 0.1D0, HALF = 0.5D0, 
     + ONE = 1.D0, TWO = 2.D0) 
C 
      DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*), 
     1 SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL), 
     2 DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*), 
     3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*), 
     4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*) 
C 
      DIMENSION SRESID(4) 
      DIMENSION SPR_AMATRX(4,4), SPR_SRESID(4) 
C 
      DOUBLE PRECISION SPR_LEN, SPR_DISP 
      DOUBLE PRECISION SPR_COS_X, SPR_COS_Y 
      DOUBLE PRECISION SPR_DISP_X, SPR_DISP_Y 
      DOUBLE PRECISION SPR_K, SPR_F 
      DOUBLE PRECISION SPR_SGN 
      DOUBLE PRECISION SPR_K_X, SPR_K_Y 
      DOUBLE PRECISION SPR_F_X, SPR_F_Y 
C 
      DOUBLE PRECISION SPR_K_SEC, SPR_K_SEC_X, SPR_K_SEC_Y 
C 
      DOUBLE PRECISION SPR_ORIENT_1, SPR_ORIENT_2 
C 
      DOUBLE PRECISION SPR_DISP1, SPR_DISP2, SPR_F1, SPR_F2, SPR_ENERGY 
      DOUBLE PRECISION SPR_DISP_X1, SPR_DISP_X2, SPR_DISP_Y1, SPR_DISP_Y2 
      DOUBLE PRECISION SPR_F_X1, SPR_F_X2, SPR_F_Y1, SPR_F_Y2 
      DOUBLE PRECISION SPR_ENERGY_X, SPR_ENERGY_Y 
C 
      INTEGER I_SPR_NUM 
      INTEGER KPNT, KSEC, KORIENT 
C 
      CHARACTER FILENAME*200 
      CHARACTER*(*) FILEPATH 
C 
C     --------------                  Choose spring data output path                   
C     
********************************************************************************************** 
      PARAMETER (FILEPATH = E:\') 
C     
********************************************************************************************** 
C 
C     --------------                  Select your spring type                         -----------
- 
C     
********************************************************************************************** 
C     * 1: Radial spring, 2: Coupled-spring pair, 3: Uncoupled spring pair 
      KPNT = 3   
C     * 0: Tangent stiffness, 1: Secant stiffness 
      KSEC = 0 
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C     * 0: Default deformation quadrants, 1: Displacement-based deformation quadrants         
      KORIENT = 1 
C     * 0:  Forbid spring data output, 1: Permit spring data output 
      KOUTPUT = 1 
C     
********************************************************************************************** 
C 
C     Specify fastener mass 
      AM   = 4.5D-5 
C 
C     Initialize vector variables 
      DO K1 = 1, NDOFEL 
          SRESID(K1) = ZERO 
          SPR_SRESID(K1) = ZERO 
          DO KRHS = 1, NRHS 
              RHS(K1,KRHS) = ZERO 
          END DO 
          DO K2 = 1, NDOFEL 
              AMATRX(K1, K2) = ZERO 
              SPR_AMATRX(K1,K2) = ZERO 
          END DO 
      END DO 
C 
C     Initialize scalar variables 
      SPR_DISP_X = ZERO 
      SPR_DISP_Y = ZERO 
      SPR_K_X = ZERO 
      SPR_K_Y = ZERO 
      SPR_F_X = ZERO 
      SPR_F_Y = ZERO 
C 
C     **************** Generate spring geometry info. **************** 
      IF (KPNT .EQ. 1) THEN 
C     * Radial-spring model 
          CALL 
SGEOM(U,COORDS,SPR_LEN,SPR_DISP,SPR_COS_X,SPR_COS_Y,SPR_DISP_X,SPR_DISP_Y,PROPS,SVARS) 
      ELSE IF (KPNT. EQ. 2) THEN 
C     * Coupled-spring model 
          CALL SGEOM_CUP(U,SPR_DISP,SPR_COS_X,SPR_COS_Y,SPR_DISP_X,SPR_DISP_Y) 
      ELSE 
C     * 2-spring model 
          CALL 
SGEOM(U,COORDS,SPR_LEN,SPR_DISP,SPR_COS_X,SPR_COS_Y,SPR_DISP_X,SPR_DISP_Y,PROPS,SVARS) 
      END IF 
C    
C     **************** Save spring original orientation **************** 
*     * Set up spring positive/negative deformation rule 
C     * Only applicable to radial spring/coupled spring model 
      IF (KPNT .EQ. 1 .OR. KPNT .EQ. 2) THEN 
C         * Deformation quadrant based on initial displacement 
          IF (KORIENT .EQ. 1) THEN 
              IF (SVARS(128) .NE. ONE) THEN 
C                 * Use default deformation quadrant when deformation is "zero" 
                  IF (DABS(SPR_DISP) .LE. TWO * TOL) THEN 
                      SVARS(129) = 1.D0/DSQRT(2.D0) 
                      SVARS(130) = 1.D0/DSQRT(2.D0) 
                  ELSE  
C                 * Now use displacement-based quadrant 
C                     * Save spring orientation 
                      SVARS(129) = SPR_COS_X 
                      SVARS(130) = SPR_COS_Y 
C                     * Keep spring orientation quadrant fixed now 
                      SVARS(128) = SVARS(128) + ONE         
                  END IF 
              END IF 
C             * Retrieve spring orientation 
              SPR_ORIENT_1 = SVARS(129) 
              SPR_ORIENT_2 = SVARS(130) 
C         * Default deformation quadrant 
          ELSE 
              SPR_ORIENT_1 = 1.D0/DSQRT(2.D0) 
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              SPR_ORIENT_2 = 1.D0/DSQRT(2.D0) 
          END IF 
      END IF  
C 
C     **************** Adjust spring deformation sign **************** 
C     * Only applicable to radial spring/coupled spring model 
      IF (KPNT .EQ. 1 .OR. KPNT .EQ. 2) THEN 
          SPR_SGN = ONE 
C         * For the case of "real compression" 
          IF (SPR_DISP .LT. ZERO) THEN 
              SPR_SGN = ONE 
C         * For the case of "fake compression" determined by deformation quadrants 
          ELSE IF (SPR_DISP_X .NE. ZERO .AND. SPR_DISP_Y .NE. ZERO) THEN 
              IF (SPR_ORIENT_1 * SPR_DISP_X + SPR_ORIENT_2 * SPR_DISP_Y .LT. ZERO) THEN 
                  SPR_SGN = -ONE 
              END IF 
          END IF   
C         * Spring deformation is assinged with positive or negative sign 
          SPR_DISP = SPR_SGN * SPR_DISP 
      END IF 
C 
C     **************** Get spring stiffness and force from nonlinear model **************** 
      IF (KPNT .EQ. 1 .OR. KPNT. EQ. 2) THEN 
C         Use tangent stiffness definition 
          I_SPR_NUM = 1 
          CALL PINCHING4(PROPS,SVARS,SPR_DISP,SPR_K,SPR_F,KINC,I_SPR_NUM) 
C 
C         Use secant stiffness definition 
          IF (KSEC .EQ. 1 .AND. DABS(SPR_DISP) .GE. TOL) THEN 
              SPR_K_SEC = SPR_F / SPR_DISP 
              SPR_K = SPR_K_SEC 
          END IF 
      ELSE  
C         Use tangent stiffness definition 
          I_SPR_NUM = 1 
          CALL PINCHING4(PROPS,SVARS,SPR_DISP_X,SPR_K_X,SPR_F_X,KINC,I_SPR_NUM) 
C 
          I_SPR_NUM = 2 
          CALL PINCHING4(PROPS,SVARS,SPR_DISP_Y,SPR_K_Y,SPR_F_Y,KINC,I_SPR_NUM) 
C 
C         Use secant stiffness definition 
          IF (KSEC .EQ. 1. AND. DABS(SPR_DISP_X) .GE. TOL .AND. DABS(SPR_DISP_Y) .GE. TOL) THEN 
              SPR_K_SEC_X = SPR_F_X / SPR_DISP_X 
              SPR_K_SEC_Y = SPR_F_Y / SPR_DISP_Y 
              SPR_K_X = SPR_K_SEC_X 
              SPR_K_Y = SPR_K_SEC_Y 
          END IF 
      END IF 
C 
C     **************** Generate stiffness matrix and residual force vector **************** 
C     * Radial spring model 
      IF (KPNT .EQ. 1) THEN 
          CALL SAMATRX(SPR_AMATRX, SPR_K, SPR_F, SPR_LEN, SPR_COS_X, SPR_COS_Y, SPR_SGN) 
          CALL SNFORCE(SPR_F, SPR_COS_X, SPR_COS_Y, SPR_SRESID, SPR_SGN) 
C     * Coupled spring model 
      ELSE IF (KPNT .EQ. 2) THEN 
          CALL SAMATRX_CUP(SPR_AMATRX, SPR_K) 
          CALL SNFORCE(SPR_F, SPR_COS_X, SPR_COS_Y, SPR_SRESID, SPR_SGN) 
C     * Uncoupled 2-spring model 
      ELSE  
          CALL SAMATRX_2(SPR_AMATRX, SPR_K_X, SPR_K_Y)  
          CALL SFORCE_2(SPR_SRESID, SPR_F_X, SPR_F_Y) 
      END IF 
C 
C     **************** Update energy **************** 
      IF (KPNT .EQ. 1 .OR. KPNT .EQ. 2) THEN 
          SVARS(141) = SVARS(142)         ! Deformation for last increment 
          SVARS(142) = SPR_DISP           ! Deformation at current increment 
          SVARS(143) = SVARS(144)         ! Spring force from last increment 
          SVARS(144) = SPR_F              ! Spring force at current increment 
C 
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          SPR_DISP1 = SVARS(141) 
          SPR_DISP2 = SVARS(142) 
          SPR_F1 = SVARS(143) 
          SPR_F2 = SVARS(144) 
          SPR_ENERGY = HALF * (SPR_F2 + SPR_F1) * (SPR_DISP2 - SPR_DISP1) 
          SVARS(145) = SVARS(145) + SPR_ENERGY 
      ELSE  
          SVARS(141) = SVARS(142) 
          SVARS(142) = SPR_DISP_X 
          SVARS(143) = SVARS(144) 
          SVARS(144) = SPR_DISP_Y 
          SVARS(146) = SVARS(147) 
          SVARS(147) = SPR_F_X 
          SVARS(148) = SVARS(149) 
          SVARS(149) = SPR_F_Y 
C 
          SPR_DISP_X1 = SVARS(141) 
          SPR_DISP_X2 = SVARS(142) 
          SPR_DISP_Y1 = SVARS(143) 
          SPR_DISP_Y2 = SVARS(144) 
          SPR_F_X1 = SVARS(146) 
          SPR_F_X2 = SVARS(147) 
          SPR_F_Y1 = SVARS(148) 
          SPR_F_Y2 = SVARS(149) 
          SPR_ENERGY_X = HALF * (SPR_F_X2 + SPR_F_X1) * (SPR_DISP_X2 - SPR_DISP_X1) 
          SPR_ENERGY_Y = HALF * (SPR_F_Y2 + SPR_F_Y1) * (SPR_DISP_Y2 - SPR_DISP_Y1) 
          SPR_ENERGY = SPR_ENERGY_X + SPR_ENERGY_Y 
          SVARS(145) = SVARS(145) + SPR_ENERGY          
      END IF 
C 
C     **************** ABAQUS/Standar analysis procedures **************** 
      IF (LFLAGS(3) .EQ. 1) THEN 
C         * General static analysis 
          IF (LFLAGS(1) .EQ.1 .OR. LFLAGS(1) .EQ. 2) THEN 
              DO K1 = 1, 4 
                  DO K2 = 1,4 
                      AMATRX(K1,K2) = SPR_AMATRX(K1,K2) 
                  END DO 
                  SRESID(K1) = SPR_SRESID(K1) 
                  RHS(K1,1) = RHS(K1,1) - SRESID(K1) 
                  ENERGY(2) = SVARS(145) 
              END DO 
C         * Dynamic analysis (implicit) 
          ELSE IF (LFLAGS(1).EQ.11 .OR. LFLAGS(1).EQ.12) THEN 
              ALPHA = PARAMS(1) 
              BETA  = PARAMS(2) 
              GAMMA = PARAMS(3) 
              DADU = ONE/(BETA*DTIME**2) 
              DVDU = GAMMA/(BETA*DTIME) 
C 
              DO K1 = 1, NDOFEL 
                  AMATRX(K1,K1) = AM*DADU 
                  RHS(K1,1) = RHS(K1,1)-AM*A(K1) 
              END DO 
C 
              DO K1 = 1, NDOFEL 
                  DO K2 = 1, NDOFEL 
                      AMATRX(K1,K2) = AMATRX(K1,K2) + SPR_AMATRX(K1,K2)*(ONE+ALPHA) 
                  END DO 
                  SRESID(K1) = SPR_SRESID(K1) 
              END DO 
C 
              DO K1 = 1, NDOFEL 
                  RHS(K1,1) = RHS(K1,1) - ((ONE+ALPHA)*SRESID(K1)-ALPHA*SVARS(150+K1)) 
              END DO 
C 
              ENERGY(1) = ZERO 
              DO K1 = 1, NDOFEL 
                  SVARS(K1+154) = SVARS(K1+150)    
                  SVARS(K1+150) = SRESID(K1) 
                  ENERGY(1) = ENERGY(1)+HALF*V(K1)*AM*V(K1) 



 

136 

              END DO 
C 
              ENERGY(2) = SVARS(145) 
          END IF 
C     * Define stiffness matrix only 
      ELSE IF (LFLAGS(3) .EQ. 2) THEN 
          DO K1 = 1, 4 
              DO K2 = 1,4 
                  AMATRX(K1,K2) = SPR_AMATRX(K1,K2) 
              END DO 
          END DO 
C     * Define mass matrix 
      ELSE IF (LFLAGS(3) .EQ. 4) THEN 
          DO K1 = 1, NDOFEL 
              DO K2 = 1, NDOFEL 
                  AMATRX(K1,K2) = ZERO 
              END DO 
          END DO 
          DO K1 = 1, NDOFEL 
              AMATRX(K1,K1) = AM 
          END DO 
C     * Half-step residual calculation 
      ELSE IF (LFLAGS(3) .EQ. 5) THEN 
          ALPHA = PARAMS(1) 
          DO K1 = 1, NDOFEL 
              SRESID(K1) = SPR_SRESID(K1) 
          END DO 
          DO K1 = 1, NDOFEL 
              RHS(K1,1) = RHS(K1,1)-AM*A(K1)-(ONE+ALPHA)*SRESID(K1) +  
     + HALF*ALPHA*(SVARS(K1+150)+SVARS(K1+154)) 
          END DO 
C     * Initial acceleration calculation 
      ELSE IF (LFLAGS(3) .EQ. 6) THEN 
          DO K1 = 1, NDOFEL 
              AMATRX(K1,K1) = AM 
              SRESID(K1) = SPR_SRESID(K1) 
          END DO 
          DO K1 = 1, NDOFEL 
              RHS(K1,1) = RHS(K1,1)-SRESID(K1) 
          END DO 
          ENERGY(1) = ZERO 
          DO K1 = 1, NDOFEL 
              SVARS(K1+150) = SRESID(K1) 
              ENERGY(1) = ENERGY(1)+HALF*V(K1)*AM*V(K1) 
          END DO 
          ENERGY(2) = SVARS(145) 
      END IF 
C 
C     **************** Ouput spring data **************** 
C     * Uncoupled 2-spring model 
800   FORMAT(I10, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8) 
C 
C     * Radial spring/coupled spring model 
900   FORMAT(I10, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8, F20.8) 
C 
      IF (KOUTPUT .EQ. 1) THEN 
          IF (KINC .GE. 1) THEN 
              WRITE(FILENAME, fmt='(a, I0, a)') FILEPATH, JELEM, ".txt" 
              OPEN(300, FILE=FILENAME, STATUS='UNKNOWN', POSITION='APPEND') 
              IF (KPNT .EQ. 1 .OR. KPNT .EQ. 2) THEN 
                  WRITE(300, 900) KINC, TIME(2), SPR_DISP, SPR_F, SPR_K, ENERGY(2),  
     +SPR_SGN, SPR_COS_X, SPR_COS_Y, SPR_DISP_X, SPR_DISP_Y 
              ELSE  
                  WRITE(300, 800) KINC, TIME(2), SPR_DISP_X, SPR_K_X, SPR_F_X,  
     +SPR_DISP_Y, SPR_K_Y, SPR_F_Y, ENERGY(2) 
              END IF 
              CLOSE(300) 
          END IF 
      END IF 
C 
      RETURN 
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      END 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

 R
es

ea
rc

h
 R

ep
o

rt
 R

P
1

5
-3

 

 
 

 
American Iron and Steel Institute 
 
 

25 Massachusetts Avenue, NW 

Suite 800 

Washington, DC 20001 

 
www.steel.org 
 

 
 


